
Research Institute for Advanced Computer Science
NASA Ames Research Center

BIRD: A General Interface For

Sparse Distributed Memory Simulators

David Rogers

January 1990

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Repor_ 90.3

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188858) BIRD: A GENERAL INTERFACE
FOR SPARSE DISTRIBUTED MEMORY SIMULATORS

(Research Inst. for Advanced Computer

Science) I00 p CSCL 09B

G3160

N92-I0292

Unclas
004]058

BIRD: A General Interface For

Sparse Distributed Memory Simulators

David Rogers

January 1990

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 90.3

NASA Cooperative Agreement Number NCC 2-387

BIRD: A General Interface For

Sparse Distributed Memory Simulators

David Rogers

Research Institute for Advanced Computer Science
NASA Ames Research Center- MS: 230-5

Moffett Field, CA 94035

RIACS Technical Report 90.3

January 1990

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported in part by Cooperative Agreements NCC 2-387 between the National

Aeronautics and Space Administration (NASA) and the Universities Space Research Association (USRA).

BIRD: A general interface for Sparse Distributed Memory simulators

David Rogers

1 August 1990

Document version 1.0 for

BIRD program release 3.169 syntax version 1.1

Copyright O 1990

Research Institute for Advanced Computer Science

Mail Stop Ellis, NASA Ames Research Center

Moffett Field, CA 94035

(4!5) 604-6363

(Internet address: drogers@riacs.edu)

RIACS Technical Report 90.3

Resarch Institute for Advanced Computer Science and David Rogers

1. Purpose

Kanerva's sparse distributed memory (SDM) has now been implemented for at least six dif-

ferent computers, including SUN3 workstations, the Apple Macintosh, and the Connection Ma-

chine. A common interface for input of commands would both aid testing of programs on a broad

range of computer architectures and assist users in transferring results from research environments

to applications. A common interface also allows secondary programs to generate command se-

quences for a sparse distributed memory, which may then be executed on the appropriate hardware.

The BIRD program is an attempt to create such an interface. Simplifying access to different sim-

ulators should assist developers in finding appropriate uses for an SDM.

BIRD can currently be used (currently) to access three different simulators for Kanerva's

Sparse Distributed Memory (SDM). The first of these simulators is based on the local UNIX host;

the second, on the SDM hardware prototype developed at Stanford; the third, on the Connection

Machine. I anticipate future systems, such as MasPar and Cray, may be added to this interface in
the future.

-2 - BIRD ReferenceManual

2. Introduction

The command language used by BIRD has several basic organizing features. It is text-

based; no special characters are used. It is line-oriented; a command is composed of a series of

command words, separated by whitespace characters (tab or space), and ended with a carriage-re-

turn. It is English-based; the command lines can be read as pseudo-English "sentences". It is case-

independent; most command tokens can be written in any mixture of upper and lower case. It is

extensible; future implementations may add new commands to the language to accommodate en-
hancements.

Given the diversity of simulators that currendy run some version of the sparse distributed

memory algorithm, it is inevitable that some commands in the interface will be functional in some

implementations and not in others. For example, a given hardware prototype may require a spe-

cific memory size, or a software simulator may not have implemented features such as input masks

and dont-care bits. In these cases, the BIRD will try to do the "appropriate" thing, whatever that

may be, and to warn the user of the situation.

In this document, sample command lines will be shown preceded by the BIRD> prompt.

3. Description of a command line

The command lines are described by giving a line of boldface command keywords and

bracketed special tokens. For example:

Set Memory Random-Seed <number>

This command is composed of three keywords (Set, Memory, and Random-Seed) and one

special token (<number>). This description can be used to instantiate an instance of a command

by filling in legal values for each special token in the command. For example, a legal command

instantiated from the description above would be:

BIRD>Set Memory Random-Seed 113

Oftentimes, a given command has different legal tokens which are allowed; for example,

the description may read:

Set System Time-Commands [Off l On]

The square brackets "[]" are used to delimit a list of options. You must select one of the

options to make a legal command, such as:

BIRD> Set System Time-Commands On

BIRD Reference Manual - 3 -

It is also possible to have optional fields, where the user is allowed to request one of a set

of options, but is not required to. In the case where the user does not specify any selection, the fin'st

item from the list is taken. Curly brackets "{ }" are used to delimit such a list. An example is:

Set Memory Radius {Automatically I <number>}

In this case, the user can either specify the keyword Automatically or give a number. If

the user does not give the fourth argument, the BIRD program selects Automatically. For exam-

pie, the command:

BIRD> Set Memory Radius

Radius setto 111

causes the BIRD program to automatically select a radius.

4. Interacting with the command line parser

We have already seen simple commands that the command line parser accepts. The parser

has a number of features that assist the user in inputting a correct command line.

Nonsyntactic command lines generate an error. The program checks for syntax every time

the user types a whitespace character (space, tab, or newline). When an error occurs, the parser

signals the user, and leaves the user at BIRD top-level with a fresh prompt:

BIRD> Set Mmeory

?No match - "mmeory"

Empty command lines are accepted, but do no operation. The program simply returns again

with the BIRD> prompt and waits for more.

The semicolon ";" is the comment character;, it is ignored, and any characters following it

are ignored, up to the end of line.

BIRD> Set Memory Radius

Radius set to 111

; this command sets the radius

The BIRD command parser does not require that full keywords be typed; only enough of

the keyword must be typed to disambiguate it from the other choices. For the previous example,

we could have typed:

BIRD> Set Mem Rad ; this command sets the radius

Radiussetto111

If in doubt, you can hit the "2" character at any time to get help as to what the legal com-

pletions of the line are. For example:

-4 - BIRD ReferenceManual

BIRD> set: mere r? a keyword, one of the following:

Radius Random-Seed Reference-Type

BIRD> setrncm r

In thiscase,the user typed ,set mere r?" and theprogram responded by givingthe list

ofpossibilities,followed by retypingthecommand line(withoutthe "?").You can now complete

thecommand line,or use backspace torub out any or allof thecurrentline.

The "?" will also show if there are any defaults. A default is the value assigned to the ar-

gument if it is not given by the user:

BIRD> dotimes ? the count

or a string, beginning with "$'!

(default is "1")

BIRD> dotimes

There are several other characters you can use to interact with the command parser.

:il You can hit ESCAPE to have the program attempt to fill-out the current field. For example,

if the command expects a file, and the file name is unique but long, typing ESCAPE will complete
the name:

BIRD> Input File very-long-? an existing file name, one of the following:

very-long-file-name

BIRD> Input File very-long-<ESCAPE>

results in:

BIRD> Input File very-long-file-name

In this example, the "?" showed that only one very long name matched. Rather than typing

in that name, we hit ESCAPE, and the command parser filled the name in, then beeped the terminal.

The "^U" (control-U) character erases the entire command line.

The "AR" (control-R) character retypes the command line.

DELETE and "AH" (control-H or backspace) are equivalent; these characters erase the pre-

viously typed character.

51 Description of some command tokens

The descriptions of BIRD commands contain a number of tokens, which are words delim-

BIRDReferenceManual - 5 -

ited by angle brackets "_". We have already seen <number>, which represents an integer number;,

here is a list of additional tokens used in the command descriptions.

<number>: This token represented a positive or negative integer number. However, the fact that

a command is syntactically valid does not mean that your command makes sense; for ex-

ample, set memory radius -1234 is syntactically valid, but is likely to signal an error when

executed, or produce incorrect results later.

<variable>: This token represents an integer variable name, which is represented as a "$" followed

by a string. The variables "$1", "$2", "$ 9" are predef'med; the user can create others

with the Create Variable command. Variables can be used in BIRD nearly any place that

numbers can be used.

<newfile>: This token represents the name of a file that is not expected to be currently on the file

system. If it does not exist, it will be created; if it does exist, it will be removed and a new
file created.

<oldfile>: This token represents the name of a fide that is expected to be currently on the file sys-

tem. An error is signalled and the command is not executed if the file does not exist.

<address>: This token represents a string that can be translated into a binary or trinary address. It

expects a string of "0", "1", and possibly "*" characters, or a special text string which refers

to an existing address.

If the string contains only "0", "1", and "*" characters, it is read as a series of binary digits.

The "*" character is called a dont-care bit; in a Hamming-distance calculation, it matches

either a 0 or a I. If the string ends before the expected address size is reached, the remainder

of the address is filled with "0" bits. If the string ends with a hyphen "-", packing is con-

tinued restarting at the beginning of the string. Some examples of addresses:

000111- is read as

1"- is read as

1111 is read as

000111000111000111000111000111...

1"1"1"1"1"1"1"1"1"1"1"1"1"1"1"...

111100000000000000000000000000...

If the address contains more than these characters, it may be an address tag, which is a

string of characters that represents some address. For example, the string "A" represents

the last address given to the Address command. The user can create addresses using the

Create Address command.

6. Why the BIRD program has so many commands

The BIRD program was developed as a research tool; I have made no attempt to trim the

program for this release. This leads to two problems: first, the number of commands in the pro-

gram is large, and second, many of the research-oriented commands are not robust and may fail.

-6- BIRDReferenceManual

Furthermore,manyof thecommandshavebeenwen-exercisedon somesimulatorsandnotonoth-
ers,leadingto further potentialproblems.

I haveresistedthetemptationto strip theprogram,insteaddecidingto leavethesystemin-
tact. This shouldallow both thesimpleuserto accessthestable,simplecommands,andthemore
advanceduser to risk using more powerful, advanced commands.

To assist the user in dealing with the large number of commands, I have organized chapters
in this manual to In'st focus the user on the most-used and most-reliable commands in the BIRD

program, then to develop more advanced topics.

To assist the user in accessing many of the more obscure commands, Appendix A contains

a listing of all (or nearly all!) possible commands for the BIRD program in alphabetical order. The

user can also use the Help command in the bird program to .access most of the command descrip-
tions on-line.

The user is encouraged to use the Bug command in the BIRD program to report bugs. This

will allow future releases to incorporate known bug fixes.

I anticipate that this program will be used primarily as a research tool. If this expectation

proves wrong, a future release may be made of a reduced BIRD program for application program-

mers who require more stability in their test environment.

7. Simple operation of the BIRD program

This section is designed to point the user to the most basic commands and command se-

quences that are useful for sparse distributed memory.

For most uses of the BIRD program, the basic chain of command events is as follows:

• Set Default commands are used to set up the defaults for the memory.

• The Create Memory command is used to create one or more memories.

• (Otherwise, the Input Memory command may be used to read a memory from a file).

• Address, Read, and Write commands are used to operate on the memory.

• Show commands are used to inspect the memory.

• The Output Memory command is used to save the memory to a file.

A sample sequence of BIRD commands is:

BIRD> Set Default Address-Size 256 ; 256 bits of address

BIRD> Set Default Data-Size 256 ; 256 bits of data

BIRD> Set Default Number-Of-Locations I000 ; I000 locations

BIRD> Create Memory Test ; Memory named "Test"

Memo_Test, I0001_ations, size256/256

BIRD Reference Manual - 7 -

BIRD> Address 1010-

Selected211ocafions, radiususedwas111

BIRD> Write 11110000-

BIRD> Read

Read dam

11110000111

11110000111

11110000111

11110000111

; Address with i010...

; Write

; See if it's there

10000111100001111000011110000111100001111000011110000

100001111000011110000111i000011110(XK) Illl000011110000

10000111100001111000011110000111100001111000011110000

10000111100001111000011110000111100001111000011110000

BIRD> Show Memory ; Show memory info

[_ of information about the setup of _e memo_]

BIRD> Show Output-Sums ; Show output sums

[informa_on about the ou_ut sums]

BIRD> Output Memory Test.memory ; Output to a file

(You may wish to try to proceeding command sequence to ensure th_it your local version

of the BIRD program is functioning. You should type the commands which are on the lines begin-

ning with the BIRD> prompt (but don't retype the prompt!)).

(It is perfectly normal for the number of selected locations to be different from the 21 se-

lected in the above examples.)

7.1. Using the Set Default command

The Set Default command is used to setup the parameters of the memory before it is cre-

ated. (Many of these commands, but not all of them, can be reset using the Set Memory command

after the memory is created.)

You can type "Set Default ?" for a full listing of the possible commands; the most

useful of the commands are:

Set Default Address-Size [<number>l <variable>]

This sets the default address size for future memories. The address size is the number of

bits used for addressing the memory. The initial value for this default is 256.

Set Default Data-Size [<number> I <variable>]

This sets the default data size for future memories. The data size is the number of bits used

for reading from and writing to the memory. The initial value for this default is 256.

Set Default Number-Of-Locations [<number>l <variable>]

This sets the default number of locations for future memories. The program will attempt

- 8 - BIRD Reference Manual

to create future memories with that many hard memory locations.

Set Default Hardware [Software-Simulator I Connection-Machine I

Stanford-Hardware]

This sets the default simulator for future memories. The program will attempt to create fu-

ture memories using the specified simulator.

For example, we can set the defaults for memory creation to make a memory with 200 ad-

dress bits, 10 data bits, and 8192 locations, and to use the Connection Machine:

BIRD> Set Default

BIRD> Set Default

BIRD> Set Default

BIRD> Set Default

Address-Size 200

Data-Size I0

Number-Of-Locations 8192 ,

Hardware Connection-Machine

You can look at the current list of defaults by using the Show Defaults command.

Remember, you do not have to type the complete command, only enough for uniqueness.

For example, the following command is acceptable:

BIRD> set def hard conn

7.2. Creating, inputting, and outputting memories

Once the memory defaults are assigned, we can create a memory using the Create Mem-

ory command.

Create Memory <memory=name> {<address-size> } {<data-size> }

This command creates new memory. The memory is assigned the given name. The address

size and data size arguments are optional; if not given, the default address size and data size are
used.

For example, we can create a new memory with the command:

BIRD>Create Memory Tweety 256 256

Memory Tweety, 1024 locations, size 256/256

If the defaults were already set to an address size of 256 and a data size of 256, we could

have typed to get the same result:

BIRD> Create Memory Tweety

Memory Tweety, 1024 locations, size 256/256

If we try to create two memories with the same names, the program signaIs an error and

BIRD Reference Manual - 9 -

refuses to create the new memory:

BIRD> Create Memory Sylvester

Memory Sylvester, 10241ocafions, size256/256

BIRD> Create Memory Sylvester

?Memory Sylvesteralreadyexists

Instead of creating a new memory, we can read in a memory previously output to a file (us-

ing the Output Memory command). We do this with the Input Memory command.

Input Memory <oldfile>

No memory name is supplied by the user;, the memory is given the name it had when saved.

If that name conflicts with a memory already in use, the string "New-" is prepended to it. For ex-

ample, if we had previously saved a memory named "Age" in file Age.memory, we could type:

BIRD> Input Memory Age .memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Age, 0 writes, created Fri Dec 29 12:44:07 1989

You may wish to try to following command sequence to ensure that your local version of

the BIRD program is functioning. You should type the commands which are on the Iines beginning

with the BIRD> prompt (but don't retype the prompt!):

BIRD>Set Default Number-of-locations I000

BIRD>Create Memory Testl 256 256

Memory Testl, 1000 locations, size 256/256

BIRD>Output Memory Testl.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

BIRD> Input Memory Testl.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Testl, 0 writes, created Fri Dec 29 12:44:07 1989

Finally, you can switch from one memory to another using the Set Active-Memory com-

mand. It takes the name of a currently defined memory (that is, defined using either Create Mem-

ory or Input Memory) and makes that the "current" memory. The current memory is the one that

all memory-related commands act upon; for example, Output Memory writes the current memory

to a file, and Address does an addressing operation on the current memory.

Set Active-Memory <memory-name>

For example, the following sequence of commands creates two memories, then activates

each of them in turn and does an addressing and write operation:

- 10 - BIRD Reference Manual

BIPdD>Create Memory Test-A 256 256

Memory Test-A, 1000 locations, size 2561256

BIRD>Create Memory Test-B 256 256

Memory Test-B, 1000 locations, size 256/256

BIRD> Set Active-Memory Test-A

BIRD> Address ll00-

Selected 19 locations, radius used was 111

BIRD>Write IIII0000-

BIRD> Set Active-Memory Test-B

BII_D> Addre s s ll00-

Selected 18 locations, radius used was 111

BIRD> Write IIii0000-

Address

Write

at ii001100...

iiii000011110000...

Write the same as for Test-A

It is possible to create the different memories on different hardware devices; thus, you

could create one memory on the Connection Machine, and one memory on the front-end computer

using the software simulator, and compare their results.

7.3. Using the Address, Read and Write commands

Once a memory has been created, we can perform memory operations on it. The primary

memory operation are Address, Read, and Write.

Address does an addressing operation: it selects a subset of memory locations from the

memory; these locations are then active for subsequent Read and Write operations. Read sums
the data counters in the selected locations, and returns the result as an address. Write writes an ad-

dress to the memory; that is, it changes the data counters in the selected locations so that future

reads will likely return the written address.

(For a more detailed description of how a sparse distributed memory works, you should re-

fer to one of the papers or books in the reference list.)

Now, for the full descriptions or Address, Read, and Write:

Address <address> {Verbosely I Silently}

The Address command takes two arguments: an address, and an optional keyword. The

address is mandatory; it is used to change the state of the current memory. This command causes

the selection a number of memory locations, which are then active for future Read and Write op-
erations.

The second argument to Address is optional; it determines whether the command will print

out helpful information about the addressing operation when completed. The default is for that in-

formation to be given.

BIRD Reference Manual - 11 -

Write <address>

The Write command writes the given address to the currently active memory. You must

have some time previously used the Address command for this command to have any effect on the

state of the memory.

Read {<address>] {Verbosely/Silently]

The Read command takes two arguments: an optional address, and an optional keyword.

This command reads the memory; if no first argument is given, the command prints the read ad-

dress. If the first argument is given, the read address is compared against that address and the dis-

tance between them is printed.

The second argument to Read is optional; it determines whether the command will print

out distance information when the read operation is completed. The default is for that information

to be given.

The simplest process for using the BIRD program involves creating a memory, addressing

it at some sample address, writing a sample data address to it, then reading from the same sample

address to confirm that the sample data address can be retrieved correctly:

BIRD>Create Memory Test

Memory Test, 1024 locations, size 256/256
BIRD> Address 1010-

Selected21 locations, radius used was 111

BIRD>Write 11110000-

BIRD> Read

Read data

; Memory named "Test"

; Address with I010...

; Write

; See if it's there

11110000111100001111000011110000 11110000111100001111000011110000

11110000111100001111000011110000 1111000011110000 1111000011110000

1111000011110000111100001111000011110000111100001111000011110000

1111000011110000 11110000111100001111000011110000 1111000011110000

It is sometimes difficult to manually study the read data pattern for errors; in this case, you

can use the first argument to Read to compute the distance between the read address and any given
address:

BIRD> Read iiii0000- ; Compare

Distanceis0

BIRD> Read iiiiiiii- ; Compare

Distanceis128

against i' s

Of course, the memory can store more than one pattern if they are stored at different ad-

dresses:

BIRD> Address i010- ; Address with i010...

- 12 - BIRD Refe_nce Manual

Selected211ocations, ra_ususedwaslll
BIRD> Write llll0000-

BIRD> Address 1110-

Selected201ocations,mdiususedwaslll

BIRD> Write 00000001-

; Write

; Address with III0...

; Write

Now we can read at the two sample addresses:

BIRD>Address I010- ; Address with i010,..

BIRD> Read ; See what' s there

Read data

1111000011110000 1111000011110000 1111000011110000 1111000011110000

[... etc ...]

BIRD>Address Iii0- ; Address with iii0.,.

BIRD> Read ; See what' s there

Read data

00000(30100000001 0000000100000001 0000000100000001 0000000100000001

[... etc ...]

7.4. Using the Show command

The Show command is used to show the user things about the current state of the BIRD

program and the memories it contains. Here is a subset of useful Show commands:

Show All Memories

This command shows all currently defined memories. Example:

BIRD> Show all memories

Memory Woof, 1024 locations, size 256/256

Memory Arf, 8192 locations, size 256/256, on Connection Machine

Show Defaults

This command shows all the current defaults. Example:

BIRD> Show Defaults

Set Default Address-Size 256

Set Default Address-Type Bit-Addresses

Set Default Area 15

[... etc ...]

The Show Defaults command prints out the defaults in a format that looks like

system commands; this allows the user to capture the commands for future use.

Show Distance <address-l> <address-2>

BIRDReferenceManual - 13-

This showsthedistancebetweentwoaddresses.Example:

BIRD>Show Distance IIii0000- llll0001-

Distance is32

This example illustrates something we haven't previously seen: how does the system as-

sign the length to re,cursive addresses (that is, addresses that end in "-")? In most cases, it is done

by context: for example, if we use an address in the Address command, then the expected length

is the address size of the memory. If there is no expected length given by the context, then the value

of the default address size (as set by Set Default Address-Size) is used for the size.

Show Input-Sums

Most of the simulators keep values called an inout sum. Whenever a write operation is con-

ducted, the input sum counters are also incremented and decremented. The input sums are equiv-

alent to a memory location which is always selected during writing, though it does not contribute

during reading.

This command also shows the total number of data addresses written into the memory.

Show Location [<number> I <variable>]

This command gives extensive information about the given location. The command re-

quires an argument, which is the index of the location in the current active memory. Locations are
numbered from 1 to the number of locations in the currently active memory. Example:

BIRD> Show Location 333

[Lots of stuff about the location, including the location address and counters.]

Show Memory

This command gives a sequence of commands which should be able to recreate the given

memory, though it does not keep track of the read and write operations which have taken place fol-

lowing memory creation.

BIRD> Show Memory ..

[Lots of Set Default, Create Memory, and Set Memory commands.]

Show Output-Sums

When a read operation is requested, the memory collects the data counters columnwise into

sums, then thresholds these sums to create the read address. You can see these sums before thresh-

olding with this command. For example:

BIRD> Show Output-Sums

- 14 - BIRD Reference Manual

[NOW: 16] 16-16 16 -16 16-16 16-16 16-16 16-16 16-1616-1616-1616-1616-16
16-16 16-16 16-16 16-16 16 -16 16 -16 16 -16 16-16 16 -16 16 -16 16-16 16-16 16 -16 16 -16

16 -16 16 -16 16-16 16-16 16 -16 16-16 16 -16 16-16 16 -16 16-16 16 -16 16-16 16 -16 16 -16

16-16 16-16 16-16 16-16 16-16 16-16 [...]

In this example, NOW gives the number of individual location writes which contributed to

the sums. The output sums are then printed out. In this case, the memory likely had the address

10101010... written to it near where we were reading.

Show Selected

This command shows a list of the selected memory locations from the last Address opera-

tion. it also gives the distance from that memory location address to the sample address. For ex-

ample,

BIRD> Address lOlO-

Selected 16 locations, radius used was 111

BIRD> Show Selected

Format is: index <distance>

59 <106>, 90 <110>, 175 <111>, 194 <110>, 298 <111>, 339 <109>, 390 <106>,

516 <110>, 583 <108>, 600 <111>, 611 <110>, 617 <108>, 662 <111>, 716 <106>,

776 <110>, 791 <109>

We could confh'm that a given distance is correct by typing:

BIRD> Show distance L59 I010- ; dist btw loc 59 and address

Distance is i06

7.5. Using the Set Memory command

Once a memory has been created, it is useful to be able to change parameters of its func-

tioning. For example, we may wish to change the radius used by the memory, or switch the mem-

ory to area-based addressing, so that it uses the number of selected locations rather than a radius

during addressing.

The following is a list of some of the more commonly-used commands.

Set Memory Radius {Automatically I <number>l <variable>}

When standard radius-based addressing is used, this command sets the radius. For exam-

ple, we may decide that we wish to have a larger radius for our 256-bit address size memory than

the standard radius of 111 bits; we could change it by:

BIRD> Set Memory Radius 114

Future Address commands will now use this new radius in calculating the set of selected

BIRD Reference Manual - 15 -

locations.

If the keyword Automatically is given, the program calculates what is considers a reason-

able radius, and uses that value.

Set Memory Type-Of-Addressing [Areal Radius]

The Kanerva model assumes that the location addresses are randomly placed. When this is

true, statistics operate well so that any address contains roughly the same number of locations with-

in a given radius.

When the location addresses axe not randomly placed, this is no longer true, and a one given

address may select many more locations than another address. Because of this breakdown, I pro-

posed the use of area-based addressing. SpeCifiCally, area-based addressing selects the radius only

once the address is given to the Address command; it selects the radius to get as close to a desired

number selected locations as possible. The default type of addressing is Radius; to use area-based

addressing, type:

BIRD> Set Memory Type-of-addressing Area

(Area addressing is only available when using the software simulator or the Connection

Machine simulator. It has not yet been implemented for the Stanford SDM hardware.)

Set Memory Area {Automatically I <number> I <variable>}

When area-based addressing is used, this command sets the desired area, that is, the desired

number of selected locations. Experiments by Kanerva suggest that a reasonable number of loca-

tions is 1/2 * sqrt (number of locations); thus, for a 1000-Iocation memory, an area of 1/2 * sqrt

(1000) or 16 locations would be useful:

BIRD> Set Memory Area 16

Future Address commands will now use this area in calculating the set of selected locations

when the memory has been set to area-based addressing mode.

If the keyword Automatically is given, the program calculates what is considers a reason-

able area, and uses that value. "

Set Memory Threshold [<number> I <variable> I Type]

The threshold of a memory is the number the memory uses to determine whether the data

counter sum represents a "0" or a "1" in the read address. The default is zero; if the data sum is

greater than or equal to zero, that bit is taken to be a "1", else it is taken to be a "0". Zero is a good

threshold only if that bit is, on the average, "0" half the time and "1" half the time in the written

data addresses.

- 16- BIRDReferenceManual

Thresholdingisacomplextopic,andonewhichI won't getinto there.Youcanreferto the
sectionon theSetMemory Threshold commandin Appendix A.

Set Memory Input-Mask [<address> I None]

The input mask is a set of bits that we should ignore during the addressing operation. Nor-

mally, the hamming distance is calculated using all the bits in the sample address; the input mask

says that some of the bits should be ignored, that is, always be counted as matching during the ham-

ming distance calculation. You will have to readjust the radius after you do this.., the more bits are

masked, the greater the number of addresses will be within a given radius.

Giving the keyword None as the argument unmasks all the bits.

This command is useful in conjunction with area-based addressing, as the radius wiU be dy-

namically changed to select the proper number of locations. For example, we can mask off every
other bit:

BIRD> Set Memory Type Area

BIRD> Set Memory Area 16

BIRD> Addr 1010-

Selected 16 locations, desired 16, radius used was 112

BIRD>Set Memory Input-Mask 101010-

BIRD> Addr 100101100111010110100101111110100101-

Selected 19 locations, desired 16, radius used was 52

Note that the radius changed from 112 to 52. This is a sensible result; with half of the bits masked,

the distances were roughly halved. Thus, one would expect the radius to also drop by about half.

7.6. Using the Output Memory command

Once we have written data to a memory, it is nice to be able to save that memory, in that

state, for later restoration.

Output Memory <newfile> {Binary I Hex}

This command takes the current memory and outputs it to the given filename. That mem-

ory file can later be restored using the Input Memory command. If the default second argument

is given, it is the format we wish to use for the output of the location addresses. The default output
format is Hex.

The memory file is an ASCII file that can be transferred from machine to machine. While

bulky, this is intentional: the desire was to allow a memory to be created using one simulator, and

then loaded into another simulator, which may be residing on a different computer. A "transfer"

of a memory currently in BIRD to another simulator can be done by saving the memory, setting a

new default hardware type, and reading the memory back in:

BIRDReferenceManual - 17-

BIRD>Output Memory Testl.memory

BIRD> Set Default Hardware Connection-Machine

BIRD> Input Memory Testl.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Test1, 333 writes, created Fri Dec 29 12:44:07 1989

BIRD> Show All Memories

Memory New-Testl, 8192 locations, size 256/1, on Connection Machine

Memory Testl, 8192 locations, size 256/1

In this way, a memory can be "copied".

Someday, when the Delete Memory command works, I could suggest that you now delete

the original memory to reclaim the space, but those days aren't here yet...

If you simply wish to save the memory location addresses, you will save space and time by

using the Output Location-Addresses command:

Output Locations-Addresses <newfile> {Binary IHex}

This command outputs all of the location addresses of the currently active memory to the

given file. They can later be restored in a memory using the command sequence Create Array

followed by Initialize Memory Using-Address-Array. The default output format is Hex.

BIRD> Output Location-Addresses LOCS Hex

[Then, muchlater...]

BIRD> Create Array locs LOCS

A_aylocscontmns1024addresses

BIRD> Initialize Memory Using locs

7.7. Using the Help command

A large number of on-line help files come with the BIRD program. The goal is to allow

any user questions to be answered on the spot, without having to consult this manual.

The simplest use of the Help command is to just type "help" followed by the top-level com-

mand name. For example, we could get help on the Plot command:

BIRD> Help plot

BIRD> Help Plot

PLOT [Address I Array I Data-File I Memory I Plot-File I Self-Array I

Weather-Item]

The PLOT command is used to create or display information best shown

- 18- BIRDReferenceManual

asagraph.

The help file for thePlot command tells you a few things about the command, and also

gives you the acceptable arguments for the command.

However, many commands have a command structure that goes down many layers. This

command allows you to follow all keyword arguments by giving multiple arguments to the Help

command. Thus, from looking at the Plot help tide, we may see the argument Address; we can

now get more help on the Plot Address command:

BIRD>Help Plot Address

PLOT ADDRESS <address> <array> {Distances I Integrated-Distances I Both }

This command plots the distribution of distances between the given

address and the addresses in the given array. You can plot the distance

distribution, the integration of the distance distribution, or both.

It creates the tides Address-into.data and Address-info.p!ot.

If possible, it displays the created plot file.

Example:

BIRD> Plot Address 1010- W Distances ; This plots the distance from

; 10101010... to each weather address

Thus, typing Help Plot Address got us a blurb on the command, and an example of its use.

Such use of the Help command can reduce the need to reference this manual, and speed the learn-

ing of the BIRD program syntax.

Finally, some special topics not associated specifically with any one command are avail-

able by typing Help On-Topic <topic-name>.

7.8. Using the initialization file .birdrc and the Input File command

Often, the user begins a program run by typing a number of initialization commands. For

example, a certain memory size might be a preferable default for your uses, and so you start by

typing a sequence of Set Default commands. This process can be automated by using the file ".bir-
drc".

When started, the BIRD program looks for two files, in sequence, until it finds one that ex-

ists: ".birdrc", then "birdrc". If it finds a file, it assumes that it is a file of BIRD commands. It

executes these commands before it displays the first prompt.

For example, my .birdrc file looks like this:

Set Default Address-Size 256

Set Default Data-Size i

BIRD Reference Manual - 19 -

Set

Set

Set

Default Type-of-addressing Area

Random Seed 333

Random Address-Seed 444

The first two commands set the default size of the memory. The third line makes the default

for the memory to use area-based addressing. The last two lines set the random number generators

to always given the same sequence, which aids in debugging.

It also is possible to create a file of BIRD commands and to execute them on demand, using

the Input File command.

Input File <oldfile> {Verbosely I Silently}

This command assumes that the given file name is a file of BIRD commands. It opens the

file and executes the commands until it reaches end of file.

The default is to show you the commands as they are executed. If you specify the second

argument as Silently, the commands are not shown, though any output that the commands generate

is still shown.

Appendix B contains a number of script fries that can be executed in this fashion. The

BIRD source directory contains these fries as scriptl.incl, script2.incl, etc.

8. Advanced operation of the BIRD program

While the commands of the previous chapter allow the user some access to a memory, to

run a full range of experiments the user needs to have a wider selection of commands. As a re-

search tool, the BIRD program has grown enormously over the past year, and many of the ad-

vanced commands were added in response to a real experimental need. They are not always sim-

ple, but much effort was made to integrate them cleanly into the system, and to make their syntax

obvious.

This chapter of the manual is composed of a number of sections. In each section, I assume

that the reader has familiarity with material that was covered in previous sections, and has little

familiarity with material that has not yet been presented. Thus, while not required, I encourage you

to at least skim the earlier sections before jumping to a later topic that may interest you.

I have always disliked having to drop down into source code level to run my experiments;

many of the features to be described are meant to bring the power of that level up to the user, so

that simple experiments no longer require expertise in the "C" programming language or an under-

standing of the internals of the BIRD program, the Connection Machine, or of the Stanford hard-

ware.

For your convenience, I offer a thumbnail sketch of each of the sections contained in this

chapter:

- 20 - BIRD Reference Manual

8.1. Arithmetic operations: variables, assignment, and functions

This chapter discusses the creation and use of integer variables, and how to use simple

arithmetic functions contained in the BIRD program. The use of variables is key to writing com-

mand scripts for the running of experiments.

8.2 Iteration and control commands

This chapter discusses the primitives available for iteration and control. Combined with

variables, these commands give the BIRD command language enough power to be able to avoid

writing code on the "C" level and having to integrate it into the BIRD source code.

8.3 Address tags and address arrays

The concept of "address" appears again and again when manipulating memories. I created

a symbolic representation for an address, called an address tag, and a similar form for arrays of

addresses. These address tags are much like variables; they can be created, assigned, and used in

any place where an address is valid.

8.4 K nearest neighbor searches

Kanerva's sparse distributed memory is related to another scheme of associative memory

called "K nearest neighbor" searching. Because it is common to compare the performance of new-

er associative memories with K nearest neighbor memories, i included K nearest neighbor style

memories in the BIRD program. The mothod is to load the array of addresses into a SDM memory,

with the memory read type (set using Set Default Read-From) set to use the associated array. The

memory is set to area-based addressing (using the Set Memory Type-Of-Addressing Area) with

a desired area of K (set using Set Memory Area).

I have not yet rewritten this section of the manual after my wholesale revision of how K

nearest neighbor searches are done in the program.

8.5 Definition of new commands

A limited capability to define new commands is given. Another section of the program still

under development, though what is there should work rather well.

8.6 Operating system calls: Bug and Exec

A few commands don't fit into other categories well, and operating system calls are among

this group. A quick round-up of some random operating system calls that are accessible through
the BIRD command level.

8.7 Plotting information

BIRDReferenceManual - 21-

I usuallyprefer to seemy informationgraphically, this is especiallyimportantwhenone is

dealing with large amounts of statsfically-based data. Thus, the BIRD program contains hooks for

interfacing with a number of plotting programs.

8.8 Genetic recombination

There has been much recent interest in combining neural-network approaches with a class

of algorithms known as Genetic Algorithms. This section of the BIRD program is the most exper-

imental, and the user is advised to stay away from it unless they are ready to start playing with "C"

source code internals, as many of these commands are still under development and have bugs. If

you are interested, however, you should read my paper in the Proceedings of the 1989 Neural In-

formation Processing Systems Conference.

8.1. Arithmetic operations: variables, assignment, and functions

To run experiments using the B/RD program, it is very useful to be able to do some simple

arithmetic operations. To give the user this capability, the BIRD program includes commands

which allow integer variables to be created, some simple arithmetic operations, and the assignment

and testing of variables. These features (with the exception of testing, which will be discussed in

a following section on Control) will be discussed in this section.

8.1.1. Integer variables

Variables in the BIRD program are denoted by a string name proceeded with the dollar sign

"$". The program comes with the variables "$1", "$2", "$9", and "$10" already created. These

variables can be used in nearly any place where an integer value is legal. For example:

BIRD> Show Variable $5

Value is 112

BIRD> Set Memory Radius $5

BIRD>Address 1010-

Selected24 locations, radius used was 112

In this example, we set the memory radius not to a number, but to the value of the variable
"$5".

We can assign the value of a variable using the Assign Variable command:

BIRD>Assign Variable $5

BIRD> Show Variable $5

Value is 3333

3333

Assign Variable <variable> [<function> l <variable> l <number>]

This command assigns the variable to the value of the given number, variable, or function.

- 22 - BIRD Reference Manual

(The legal functions will be presented in the following section.)

While 10 variables are useful, users may wish to create their own variables, either because

they need more than 10, or because they wish to give the variables more descriptive names. You

can create variables using the Create Variable command:

Create Variable <variable> [<function> l <variable> l <number>]

This command creates a new variable of the given name. For example, we could rewrite

the above example to be more descriptive:

BIRD> Create Variable $Radius 112

BIRD> Set Memory Radius $Radius

BIRD> Address 1010-

Selected241_ations, ra_ususedwas112

As shown above, you can see the value of any variable using the Show Variable command:

Show Variable [<function> l <variable> l <number>]

For example:

BIRD> Show Variable SRadius

Value is112

If a variable that has not been created is given to this command, the value "0" is printed.

This is a widespread practice; using a variable that has not been defined is not an error, but uses

the value zero. This is true for all commands exceot assignment; it is an error to try to assign the

value of a variable that does not exist. For example:

BIRD>Assign Variable Snever-created 12345

?Not a variable:$never-created

We can delete variables using the Delete Variable command:

Delete Variable <variable>

This command deletes the given variable name from its table of variables. Variables are

fairly inexpensive to keep around, so you shouldn't need to worry about this command unless you

are used to cleaning up after yourself.

(Some system-created variables are undeletable; the system will signal an error and refuse

to delete them if you try.)

We can get a list of all the defined variables using the Show All Variables command:

BIRDReferenceManual - 23-

Show All Variables

This command prints a list of all currently defined variables and their current value:

BIRD> Show All Variables

$NUMBER-OF-WRITES: 0, $TOTAL-NUMBER-OF-WRITES: 0,

$DISTANCE: 0, $GENETIC-DONE: 0, $LOCATION-SELECTED: 0,

$UNWEIGHTED-DISTANCE: 0, $LOCATION-DISTANCE: 0,

$GENETIC-FAILED: 0, $GENETIC-OK: 0, $LOCATION-AVG-VOTE: 0,

$BAD: 0, $GOOD2: 0, $GOODl: 0, $LOCATION-RADIUS: 0,

$SELECT-COUNT: 24, $SDM-RADIUS: 111,

$PROGRAM-ID: 649180109, $LOCATION-BIRTHDATE: 0,

$LOCATION-WEIGHT: 0

Finally, we can do two other operation with variables, called pushing and Dopping.

Push Variable <variable> [<function> l <variable> l <number>]

Pop Variable {<variable>} {<variable>} {<variable>} {<variable>} {<variable>} {<vari-

able> } {<variable> } {<variable> } { <variable> } { <variable>}

The Push Variable command pushes a new value onto the given variable name; future ref-

erences to that variable will use that new variable. However, the old value is retained, and is re-

stored when the Pop Variable command is given. These commands are useful when you wish to

use a variable, but are not sure if other routines have already assigned its value.

The Pop Variable command can take up to 9 variables to pop.

Variable pushing and popping is mostly used in script files to avoid smashing the values of

variable between script files.

8.1.2. Arithmetic functions

The previous section showed how to create and manipulate variable. To get full use of

these variables, however, it is necessary to be able to perform simple arithmetic operations on vari-

ables and numbers. The BIRD program contains some commands which allow simple arithmetic

operations; these commands are available anywhere the command accepts the <function> token.

Wherever this token is legal, any of the following list of commands is legal:

<Function>: {Not} [Address-Size I Array-Size I Count I Distance 1EQ I NEQ I
GT I GEl LT I LE I If-Undefined I Location-Selected] Minus I Mod I Not l

Plus l Quotient I Random I Real-Index I Same l Selected-Location [Times I

Variable-Exists I <number> l <variable>]

Some commands which accept an argument of an integer value allow simple mathematical

- 24 - BIRD Reference Manual

functions to be given. For example, Assign Variable allows the variable to be assigned to the val-
ue of a function:

BIRD>Assign Variable $ARF Plus $Dog $Bone

BIRD>Echo SUM: SDog "plus" $Bone "equals"

SUM: 11 plus 22 equals 33

$Arf

Another example is the creation of a new variable:

BIRD>Create Variable $NewArf Plus Sarf I0

The ability to perform simple arithmetic, when combined with simple control constructs

such as If and Do (see following section for a description of Control), allows the user to write com-

mand scripts directly to the BIRD command interpreter, without having recode program internals.

The following is a simple explanation of the possible functions:

Not [<function> I <variable> I <number>] returns "0" if the argument has a non-zero value, and
returns "1" otherwise.

BIRD> Assign Variable $I Not

BIRD> Show Variable $i

Valueisl

BIRD> Assign Variable $i Not

BIRD> Show Variable $I

Valueis0

Equal 333 444

EQ 333 333

Address-Size <address> returns the number of elements in the given address.

BIRD>Create Memory Aardvark 256 256

Memory Aardvark, 100000 locations, size 256/256, on Connection Machine

BIRD>Address llll0000-

Selected 376 locations, desired 350, radius used was 102

BIRD> Print A

Address:

1111000011110000 1111000011110000 1111000011110000 1111000011110000

1111000011110000 1111000011110000 1111000011110000 1111000011110000

1111000011110000 1111000011110000 1111000011110000 1111000011110000

1111000011110000 1111000011110000 1111000011110000 1111000011110000

Bitcount:1:I28 0:128

BIRD>Assign Variable SASize

BIRD> Show Variable SAsize

Valueis256

Address-Size A

In this example, we create a memory and address it. The tag "A" contains a copy of the

BIRD Reference Manual - 25 -

address we used. We assign the variable $ASize to the size of this address. This may be useful if

we have multiple memories of different sizes, and need to change our commands depending on the

address size.

Array-Size <address-array> returns the number of addresses in the given address array.

For example, the array "L" (L1, L2, etc) is the size of the number of memory locations. We

can test:

BIRD> Create Memory Aardvark 256 256

Memory A_dv_k, 1000001ocations, size256/256, on Connection Machine

BIRD> Assign Address $I Array-Size L

BIRD>Show Variable EQ $i i00000

Valueisl

In this example, we create a memory, and then assign variable "$1" to the size of L. This

should be equal to the number of locations in the memory; we test that in the final statement, and

it returns "1" (true).

Count <address> returns a count of the number of non-zero elements in the given address.

The Count keyword is useful for counting bits. Here is an example (which admittedly uses

some commands we haven't seen yet):

BIRD> Create Address AAA 256 Bit

BIRD> Create Address BBB 256 Bit

BIRD> Create Address CCC 256 Bit

BIRD> Assign Address AAA Z

BIRD> Assign Address BBB Z

BYRD> Assign Address CCC XORAAA

BIRD> Show Variable Count CCC

Valueis123

BBB

In this example, we create three 256-bit binary addresses, AAA, BBB, and CCC. We as-

sign the flu'st two addresses to random values, then assign the last to the XOR of the first two. We

can then count the number of bit positions at which AAA and BBB differ. A more direct way of

doing this example would have been to use the Distance keyword:

Distance <addrl> <addr2> returns the L1 distance between the addresses. (For binary addresses,

this is the Hamming distance.)

BIRD> Create Address AAA 256 Bit

BIRD> Create Address BBB 256 Bit

BIRD> Assign Address AAA Z

BIRD> Assign Address BBB Z

BIRD> Show Variable Distance AAA BBB

- 26 - BIRD Reference Manual

Value is 123

In this example, we create two addresses, and set them to random values. We can then cal-
culate the distance between them.

EQ [<variable1>

NEQ [<variable1>

GT [<variable1>

GE [<variable1>

LT [<variable1>

LE [<variable1>

Minus [<variable1>

Plus [<variable1>

Quotient [<variable1>

Times [<variable1>

Mod [<variable1>

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

[<variable2> l <number>]

[<variab le2 > l <number>]

[<variable2> l <number>]

[<variable2> l <number>]

[<variable2> l <number>]

[<variable2>

[<variable2>

[<variable2>

[<variable2>

[<variable2>

[<variable2>

<number>]

<number>]

<number>]

<number>]

<number>]

<number>]

A large block of functions involve simple arithmetic operations on integer arguments. I

won't go into detailed explanations of these keywords; suffice it to say that each of them returns

the "obvious" value from a computation on its arguments. A simple example is:

BIRD>Assign Variable $ARF Plus $Dog $Bone

BIRD>Echo SUM: $Dog "plus" $Bone "equals"

SUM: 11 plus 22 equals 33

$Arf

If-Undefined <variablel> <variable2> returns the value of <variablel> if it is undefined; else, it

returns the value of <variable2>.

This keyword is most useful in script files. Arguments are given to scripts through integer

variables; it is often useful to have the equivalent of "optional" arguments that some languages

support. This command allows that; for example, let's say we wish to use a variable "$Size", and

to have it default to a value of 1000 if it was not defined previously:

BIRD> Create Variable $Size If-Undefined I000 $Size

This command creates a variable $Size; if the variable already existed, it is simply assigned

to its previous value, else it is initialized to 1000.

This command is especially useful with the Push Variable command.

Location-Selected [<variable> I<number>] returns 1 if the given location is selected in the current

memory, and 0 otherwise.

BIRD>Address llll0000-

Selected 376 locations, desired 350, radius used was 102

BIRD> If Location-Selected I0

BIRD Reference Manual - 27 -

BIRD> Echo "Location I0 was selected"

BIRD> End

Random [<variable> I <number>] returns a number in the range [0, <variable>).

Sometimes randomness can be useful.

BIRD> Show

Value is3

BIRD> Show

Value is9

BIRD> Show

Value isI

Variable

Variable

variable

Random i0

Random i0

Random i0

(Of course, this command sequence would have been easier to write using the DoTimes

command, which will be explained in a following section:)

BIRD> DoTimes

DOTIMES> Show

DOTINHES> End

Value is 3

Value is 9

Value is 1

3

Variable Random i0

Real-Index <array-element> returns the physical index of the array element, ignoring any reorder-

ing which have taken place.

This keyword isn't very useful to anyone other than real hackers. As we reorder arrays and

create array aliases, it is sometimes useful to be able to access the physical index of an array in a

file. This command allows that.

Same <addressl> <address2> returns "1" if the addresses are the same, and "0" otherwise.

This keyword tests for the identicalness of the two addresses. Useful with control state-

ments such as If; we can make a block of commands conditional on the equality (or nonequality,

if proceeded with Not) of two addresses.

Selected-Location [<variable> I <number>] returns the index of the <number>th selected loca-

tion.

This is used to walk-through the list of selected locations. The first selected loca-

tion is index 1. For example:

BIRD>Address llll0000-

Selected 2 locations, desired 3, radius used was 102

BIRD> Show Selected

- 28 - BIRD Reference Manual

Format is:

565 <102>, 864 <102>

BIRD> Show Variable

Value is 565

BIRD> Show Variable

Value is 864

index<distance>

Selected-Location 1

Selected-Location 2

Variable-Exists <variable> returns "1" if the variable name has been defined, and "0" otherwise.

This command is related to the If-Undefined keyword. It similarly tests for the existence

ofvariables; for variables with more complex initialization routines, this keyword, combined with

a control statement such as If, can make a block of command conditional on the existence or non-

existence of a variable.

8.2. Iteration and control commands

Iteration (the execution of a command sequence a number of times) and control (the option-

al execution of commands) are essential if the BIRD interface is to be general enough to allow the

user to perform useful experiments. The BIRD interface has four such commands: Do, DoTimes,

If, and While.

These commands differ from most other commands in that they take more than one line to

fully specify. For each one, after the initial command line is typed, the user is prompted for a set

of syntactically-correct command lines, which are not executed, but are stored. The user completes

the input of command lines with the End command. It is only at this point that the command se-

quence is executed.

DoTimes [<number> l <variable>]

The simplest command of this class is DoTimes; it simply repeats the execution of a given

block of commands a given number of times:

BIRD> Dotimes

DOTIMES> Echo

DOTIMES> End

ARF!

ARF!

ARF!

This command illustrates the basic features of this class of commands. First, the DoTimes

command is entered, which places the user into command-input mode. This mode change is made

apparent to the user by a change of prompt to DOTIMES>. Next, the user inputs a command se-

quence, in this case, the single Echo command, then terminates the input with an End command.

At this point the command is executed the given number of times.

BIRDReferenceManual -29-

Do <do-variable> {<start> I <variable>} {<end>I<variable>} {<step>l <variable>}

A morecomplexiterationcommandis theDocommand.It repeatedlyexecutesablock of
commands,but alsoassignsavariableto anewvaluefor eachiteration.

Thedovariableis thenameof acurrentlyexistingvariable.Thenextargumentis thestart-
ing valueof thedovariable; if notgiven,thisdefaultsto "1". Thenextargumentis thefinal value
of thedovariable; whentheiterationresultsin avariablevalueover this number,thecommand
finishes. This valuedefaultsto "1" if not given. Thefinal argumentis the stepsize,which is the
amountby which thedo variableis incrementedeachstep. Thevaluedefaultsto "1" if notgiven.

For example,wecouldhaverewrittenthecommandsequencegivenin theDoTimes expla-
nationby having it print theiterationnumber:

BIRD> Do

DO> Echo

DO> End

ARF: I

ARF: 2

ARF: 3

$113

"ARE: " $I

The Do command is useful for manipulating address arrays. If an array name ends with the

name of an integer variable, the variable is replaced by its value. For example, we could write a
memories own location addresses to itself:

BIRD>Create Variable SNOL Array-Size

BIRD>Do $i 1 SNOL

DO> Address L$1

DO> Write L$1

DO> End

[Print out of each addressing operation follows]

L

In this sequence, "L$1" is replaced each step by the value of "$1"; for example, if the value

of "$1" is 123, then "L$1" is equivalent to L123, which is the address of the 123rd memory loca-
tion.

This issue is discussed more in the section on Address Tags and Address Arrays.

If [<function> I <variable> l <number>]

This command is used to conditionalize a sequence of commands. "True" is defined as a

non-zero value, and "false" a zero value. Thus, "If 1" always executes its block of commands, and
"If 0" never executes its block of commands.

For an example of the use of this command, we may wish to print out a message whenever

the read address (kept in the address tag "R") and the written address:

- 30 - BIRD Reference Manual

BIRD> If Not Same R 1010-

IF> Echo "The addresses are

IF> End

not the same"

It is also possible to use the Else command to separat e the block of commands into two sec-

tions, the fast of which is executed if the condition is true, and the second executed if the condition

is false.

Else

The else command is only legal inside of an If command block. For example:

BIRD> If Same R 1010-

IF> Echo "The addresses are

IF> Else

IF>Echo "The addresses are

_> End

the same"

not the same"

This sequence of command will print out a message every time it is executed, but the mes-

sage printed will vary depending on whether the addresses are the same or not.

While [<function> I <variable> l <number>]

Finally, we have a command which executes its block as long as the test is true (non-zero).

For example, we may wish to write an address to the memory was long as reading the address does
not result in the written address:

BIRD> Read

BIRD> While Not Same R

WHILE> Write 1010-

WHILE> Read

W]qILE>End

I010-

8.3. Addresses, address tags and address arrays

Many commands in the BIRD program require an address; to this end, the program has

methods for creating, inputting, and manipulating addresses. This section will discuss the use of

addresses, address tags, and address arrays.

Most important to the user is the ability to specify an address in a command. For example,

assuming a memory has been created, the user may wish to do an Address command to the mem-

ory.

The simplest form of inputting an address requires that the user type in a string of the char-

BIRD Reference Manual - 31 -

acters "0" and "1". If the memory requires 32 bit input addresses, we could given the command:

BIRD> Address i0101010101010101010101010101010

Selected 15 locations, radius used was 12

In this case, we typed out the full 32 character string. However, the input routines recog-

nize the character "-" as a signal for recursion: reading continues at the beginning of the string.

Thus, the above example is equivalent to:

BIRD> Address 10-

Selected 15 locations, radius used was 12

All addresses are implicitly padded with zeroes at the end; that is, if there are not enough

characters to complete the address, the remaining bits are loaded with "0" bits.

8.3.1. Address tags

It would be tiring to always refer to addresses by their full typed expansion. Thus, the

BIRD program contains alphanumeric "tags" which represent addresses. It is also possible to cre-

ate new "tags" using the Create Address command. For example, we could have written the ex-

ample in the previous section using the Create Address and Assign Address commands.

Create Address <name> [<address-size> I <variable>]

{Bit-Addresses I Float-Addresses }

This command creates an address tag of the size and type. In the future, you can use the

tag name in any command that requires an address.

Assign Address <destination-address> [<address-op> l <address>]

This command assigns the destination address to the value of the source address or the giv-

en operation. (The definition of legal address operation is given later this chapter.)

Giventhesetwocommands, wec_ now write:

BIRD> Create Address AAA 32 Bit-Address

BIRD> Assign Address AAA 1010-

BIRD> Address AAA

Selected l51ocations, radiusused wasl2

In this case, we created a new address tag named AAA, assigned a value to it, then used

that tag to address the memory.

The BIRD program also contains several built-in address tags, which are automatically cre-

ated by the program:

- 32- BIRDReferenceManual

"A" refersto thelast address used to address the memory. For example, after the previous
example, the tag A would contain the value 10101010101010101010101010101010.

"R" refers to the last address read from the memory.

"W" refers to the last address written to the memory

"M" refers to the current input mask for the current memory.

"Z": returns a random address with no dont-care bits. Each reference using "Z" returns a

different random address.

8.3.2. Address arrays

Some address come naturally in the form of arrays rather than individually. For example,

the location addresses of a memory can be best considered as an array of addresses. The BIRD

program allows the manipulation of arrays, both as individual elements and as blocks.

Create Array <array-name> <oldfile>

Create Array <array-name> [<array-length> l <variable>] [<address-size> l <variable>]

{Bit-Addresses [Float-Addresses}

This fkst command creates an array using the addresses in the given file. The addresses are

not read into the memory; instead, a list of pointers to the addresses is kept, and the addresses are

read in as needed. This allows the system to deal with very large databases of addresses, at a price

of some speed.

The second command create an array in memory with the given number of addresses in it.

While more memory-consumptive, this array is faster to access; for arrays that will be used a lot,

you may wish to transfer them into an internal array by copying using the Assign Array command.

Assign Array <address-array> <source-address-array> {<start> l <variable>}

{* I <end> l <variable>}

This command is used to assign a block of addresses from one array to another. The com-

mand tries to copy as many addresses as it can; the user can limit the range of addresses in the

source array by giving a start and end index.

For example, if we had two arrays, an internal array named INTERNAL and a file array

named TEST, we could copy from the file array to the internal array:

BIRD>Assign Array INTERNAL TEST

Copied 1024 addresses

It is also possible to assign only a range of addresses:

BIRDReferenceManual -33-

BIRD>Assign Array INTERNAL TEST I00 199

Copied 100 addresses

The BIRD program also contains several built-in address arrays, which are automatically

created by the program:

"L" followed by a number, such as "L100", refers to the address of the corresponding mem-

ory location. (Locations are numbered starting at 1).

"Z" followed by a single-digit number, such as "Z5", returns a random address with no

dont-care bits. Each reference returns the same random address.

When a memory is created, the memory name can be used to reference the location address-

es of that memory. (If the name is already taken, a new name is given to that memory's

location addresses.) For example, if we had typed Create Memory ARF, then we could

use "ARF10" to refer to the tenth memory location address.

If the Darwin weather data is included in your BIRD release, then two additional address

arrays are defined:

"W" followed by a number, such as "W2345", returns a weather state from the Darwin

weather file, coded into a 256-bit address. (Note that "W" with n..9.otrailing number is a dif-

ferent type of address, namely the last address written to the memory.)

"R" followed by a number, such as "W2345", returns rain information from the Darwin

weather file, coded into a 1-bit address. The bit is "1" if it rained during that weather period,

and "0" otherwise. (Note that "R" with n...ootrailing number is a different type of address,

namely the last address read from the memory.)

8.3.3. Address operations

The previous section showed how to create and manipulate addresses and address arrays.

To get full use of these addresses, however, it is necessary to be able to perform simple address

operations on them. The BIRD program contains some commands which allow simple address op-

erations; these commands are available anywhere the command accepts the <address-op> token.

Wherever this token is legal, any of the following list of commands is legal:

<address-op>: [And I Coords I Cross I Mutate I Not I Or I Random IXorl <address>]

Some commands which accept an argument of an address allow these address operations

to be given. For example, Assign Address allows the address to be assigned to the value of an

address operation:

BIRD>Assign Address ARF XOR DOG 10101010-

BIRD>Echo "The XOR of BOG and I01010- is"

BIRD> Print ARF

- 34 - BIRD Reference Manual

Address:

1011010001111110 0110101000001101 10111010101100001000110001011011

0001010101010000111000111101111100111110011111010010100000000110

00II10001000i1101111111001011011 1000011011101011 0110000100110110

1001001111101101 01110101100100001111100101110001 1000100000010000

Bit count: 1:130 0:126

The following is a simple explanation of the possible address operations:

And <address-l> <address-2> returns the boolean AND of the given addresses. If the addresses

are float addresses, it returns the MIN of the addresses.

Coords [<number> l <variable>] returns an address which contains exactly number bits "1" and
the remainder "0"..

Cross <address-l> <address-2> returns a crossover between the two addresses.

Mutate <address-I> [<number> I <variable>] returns a copy of the first address with number bits

mutated.

Not <address-I> returns the boolean NOT of the first address. If the address is a float address, it

returns an address with each bit having the value (1.0 - b) of the original address..

Or <address-l> <address-2> returns the boolean OR of the given addresses. If the addresses are

float addresses, it returns the MAX of the addresses.

Random returns a random address.

Xor <address-l> <address-2> returns the boolean XOR of the given addresses. If the addresses

are float addresses, I'm not sure what I do, perhaps average.

8.3.4. Using dont-care bits

If the string contains only "0", "1 ", and "*" characters, it is read as a series of binary digits.

The "*" character is called a dont-care bit;, in a Hamming-distance calculation, it matches either a

0 or a 1. If the string ends before the expected address size is reached, the remainder of the address

is filled with "0" bits. For example, we could address a 32-bit memory while ignoring the first 6
bits:

BIRD>Address ******i0101010i01010101010101010

Selected 345 locations, radius used was 12

Dont-care bits in the address are equivalent to a one-time input mask.

Of course, since the dont-care bits always match, you need to reduce the radius to avoid

BIRD Reference Manual - 35 -

selecting too many locations. The easiest way to use dont-care bits is to set the memory for area-

addressing: that is, to select a radius automatically to give the proper number of selected locations.

In the previous example, we selected too many locations. It would have worked better if we had

set the memory to area addressing:

BIRD> Set Memory Type-Of-Addressing Area

BIRD> Set Memory Area 15

BIRD> Address ******I0101010101010101010101010

Selected l01ocations, deskedl5, ra_usused was9

8.4. K nearest neighbor searches

(This section not yet written.)

8.5 Definition of new commands

As BIRD developed, I found myself creating command files which performed specific

functions. For example, I wanted a command that would fill a memory with a given number of

random addresses. Tiring rather quickly of constantly using the Input File command to input this

sequence of commands, I created the Define command to allow the definition of new top-level

command sequences.

Define <name> {Variable <variable>} {Variable <variable>} {Variable <variable>

{Variable <variable>} {Variable <variable> } {Variable <variable>}

{Variable <variable>} {Variable <variable> } {Variable <variable>}

This command is used to define new top-level commands. The arguments allowed are cur-

rently all variables; when the command is given by the user, the user's arguments are bound to

these variables, then the command is executed.

It is usually more efficient to define a command rather than to constantly use the Input File

command.

For example, we could create the Fill command, which writes a given number of random

data patterns into the memory at random locations:

BIRD>Define Fill Variable SHow-Many

DEFINE> Dotimes SHow-Many

DOTIMES2>Address Z Silently

DOTIN[ES2> Write Z

DOTIMES 2> End

DEFINE> End

At this point, the Fill command is defined. We can now f'dl the memory with a given num-

ber of patterns with:

- 36 - BIRD Reference Manual

BIRD> Fill i00

You can see all command definitions using the Show All Definitions command. You can

see a specific def'mition using the Show Definition command.

Show All Definitions

This command shows all commands defined with the Define command. For a more de-

tailed description of an individual definition, use the Show Definition command.

BIRD> Show All Definitions

There is 1 command defined.

Define FILL Variable SHow-Many

Show Definition {<command-name>}

This command shows the definition for the given command, if the command was previous-

ly defined using the Define commands. For example:

BIRD> Show Definition Fill

Define FILL Variable SHow-Many

DoTimes SHow-Many

Address Z Silently
Write Z

End

End

Finally, we can delete obsolete command using the Delete Definition command:

Delete Definition <defined-command>

This command deletes the given defined command from the system. The command must

have been previously created using the Define command.

8.6 Operating system calls: Bug and Exec

The BIRD program contains some commands that call operating system routines. The most

important of these commands is Bug, which sends bug reports:

Bug

This command is used to send a bug report. Please include in the bug report all the infor-

mation needed to reproduce the bug, along with the version numbers and site of your BIRD pro-

gram.

BIRDReferenceManual - 37-

BIRD> bug
Executing:/usr/ucb/mail-s "Bugreportfor BIRD" drogers@riacs.edu
Pleasetype in theproblem:
In BIRD version 3.0, on host brain.damaged.edu, the

command sequence caused the program to crash:

following

Set default number-of-locations 999

Create memory test-memory 257 257

Output location-addr file.mem hex

Signed,

A. User

user@brain, damaged, edu

^D

EOT

Mail sent OK

The user is encouraged to send bug reports whenever any issue, big or small, arises con-

cerning the BIRD program. We will try to quickly fix and send patches for any bugs we find in the

BIRD program sources.

We also appreciate solutions to bugs found by more advanced users who find problems in-

side the source code. The more sharing of problems and solutions we do, the better this public-

domain program will be!

The BIRD program also contains methods for executing UNIX programs, or getting to the

UNIX shell:

Exec Program <string>

This command tries to execute the given program name. When completed, the user is re-

turned to the BIRD program.

BIRD>Exec Program date

Wed Jan 3 16:10:13 PST 1990

Exec UNIX

This command starts off a UNIX shell and leaves the user there. Upon exiting that shell,

the user is returned to the BIRD program.

8.7 Plotting information

This section not yet completed.

8.8 Genetic recombination

- 38 - BIRD Reference Manual

This section not yet completed.

BIRDReferenceManual - 39-

- 40-

PRECEDING PAGE BLANK NOT

APPENDIX A:

Abort

BIRD Reference Manual

F!LMED

Alphabetical list of BIRD commands

The Abort command is used to abort out of a block of input from Define, Do, DoTimes,

If, and While, without executing any commands. It is for the occturence that you change your

mind after initiating a block of input.

BIRD> DoTimes I000

DOqq]VIES>Address Z ; oops.., changed my mind here...

DO_S> Abort

?No commands to execute in DOTIMES statement

Address <address> {Verbosely I Silently}

The Address command takes two arguments: an address, and an optional keyword. The

address is mandatory, and changes the state of the memory. It selects a number of memory loca-

tions, which are then active for future Read and Write operations.

The second argument to Address is optional; it determines whether the command will print

out helpful information about the addressing operation when completed. The default is for that in-

formation to be given.

BIRD>Address 1010-

Selected 19 locations, radius used was 111

Assign [Address I Array I Variable]

This command is used to assign the value of predefined objects: address tags, address ar-

rays, or integer variables. See the specific help for the given type of assignment for more details.

Assign Address <destination-address> [<address-op> l <address>]

This command assigns the destination address to the value of the source address or the giv-

en operation.

For help on the available address operation, type Help On-Topic Address-Op.

For example, we could assign the value of the previously created address TEST-X by giv-

ing the command:

BIRD>Assign Address Test-X 1010-

We could also assign the value of the address using an address operation:

BIRD>Assign Address Test-X XOR Test-Y Test-Z

BIRD Reference Manual -41 -

Zo

In this case, Test-X is assign to a value which is the XOR of the addresses Test-Y and Test-

You can delete a created address using the Delete Address command.

Assign Array <address-array> <source-address-array> {<start> l <variabIe> }

{* I <end> l <variable>}

This command is used to assign a block of addresses from one array to another. The com-

mand tries to copy as many addresses as it can; the user can limit the range of addresses in the

source array by giving a start and end index.

For example, if we had two arrays, an internal array named INTERNAL and a file array

named TEST, we could copy from the file array to the internal array:

BIRD>Assign Array INTERNAL TEST

Copied 1024 addresses

It is also possible to assign only a range of addresses:

BIRD>Assign Array INTERNAL TEST I00 199

Copied 100 addresses

Finally, we can start the block copy into a place inside the destination array, by giving the

index of the starting position in the destination array name:

BIRD>Assign Array INTERNAL100 TEST

Copied 924 addresses

In this case, the first address of TEST was copied into the 100th address of INTERNAL,

and so on.

Assign Variable <variable> [<function> l <variable> l <number>]

This command assigns the variable to the value of the given number, variable, or function.

For help on the available functions, type Help On-Topic Functions.

For example, we could assign the value of the variable "$1" by typing the command:

BIRD>Assign Variable $i 333

Or we could assign the value of the variable to a function result:

BIRD>Assign Variable $I Plus $2 $3

- 42 - BIRD Reference Manual

You can delete a created variable using the Delete Variable command.

Bug

This command is used to send a bug report. Please include in the bug report all the infor-

mation needed to reproduce the bug, along with the version number and site of your BIRD pro-

gram.

BIRD> bug

Executing:/usr/ucb/mail -s "Bug report for BIRD" drogers@riacs.edu

Please type in the problem:

In BIRD version 3.0, on host brain.damaged.edu, the

command sequence caused the program to crash:

following

Set default number-of-locations 999

Create memory test-memory 257 257

Output location-addr file.mem hex

Signed,

A. User

user@brain.damaged.edu

^D

EOT

MallsentOK

Clear [Addresses I Data I Folds I History I Location]

This command clears things. Clear Addresses resets the address in the memory. Clear

Data clears out all data written to the memory. Clear Folds is not yet implemented. Clear His-

tory clears out the history list in a memory. See the specific help for the given clear command
for more details.

Clear Addresses

This command restores the addresses of the current memory, erasing any changes that oc-

curred since creation.

Clear Data

This clears the current memory of all data, this is, makes it appear that the memory never

had anything written into it.

Clear Folds

(Not yet implemented in BIRD 3.0).

BIRD Reference Manual - 43 -

Clear History

This command clears the history list of the given memory.

Clear Location [<variable> I <location-index>]

This command clears the given location, that is, makes it appear as if it was never written to.

Create [Address I Alias I Array I Memory I State-File I Variable]

This command is used to create objects in the BIRD environment, which can then be ma-

nipulated by other BIRD commands. See the specific help for the given type of creation for more
details.

Create Address <name> [<address-size> l <variable>]

{Bit-Addresses I Float-Addresses }

This command creates an address tag of the size and type. In the future, you can use the

tag name in any command that requires an address. For example, we could create an address of

size 256 bits, assign it to a random sequence of bits, and then use it to address the memory:

BIRD> Create Address TEMP 256

BIRD> Assign Address TEMP Z

BIRD> Address TEMP

Selec_dl91ocafions, raNusused waslll

Bit

Create Alias <alias-name> <address-array> {<start> I <variable>}

{*1 <end> l <variable>}

This command is used to create new names for previously defined address arrays. The alias

array can be of smaller size than the original array, and can "capture" the current ordering of the

source address array.

For example, we may have a script that uses the array ADDR to denote memory addresses.

If we have a currently defined array TEST that we wish to use in the script, we could create ADDR

as an alias of TEST:

BIRD> Create Alias ADDR TEST

We could also have created ADDR to be some subset of TEST:

BIRD> Create Alias ADDR TEST 1 i00

Array aliasing has another feature, which is that is captures the current ordering of a source

array. For example, assume that we had randomly ordered TEST, and then created the alias

- 44 - BIRD Reference Manual

ADDR, then again reordered, and created an alias :

BIRD> Reorder TEST

BIRD> Create Alias

BIRD> Reorder TEST

BIRD> Create Alias

Randomly

ADDR-A TEST

Randomly

ADDR-B TEST

In this case, the arrays ADDR-A and ADDR-B will contain the same addresses, but in dif-

ferent orderings.

The Reorder command can also be used to reorder alias arrays; restoring their order t0

their Original-Order restores the order to the order at the time of their creation.

Aliases can be deleted with the Delete Array command.

Create

Create

Array <array-name> <oldfile>

Array <array-name> [<array-length> l <variable>] [<address-size> I <variable>]

{Bit-Addresses [Float-Addresses}

This first command creates an array using the addresses in the given file. The addresses are

not read into the memory; instead, a list of pointers to the addresses is kept, and the addresses are

read in as needed. This allows the system to deal with very large databases of addresses, at a price

of some speed.

The second command create an array in memory with the given number of addresses in it.

While more memory-consumptive, this array is faster to access; for arrays that will be used a lot,

you may wish to transfer them into an internal array by copying using the Assign Array command.

For an example, assume that we have a file of addresses called test.addr. We can now cre-

ate an array from this file with the command:

BIRD> Create Array TEST test.addr

Array TEST contains 1024 addresses

We can now print out (or otherwise use) any member of this array:

BIRD> Print test222

Address:

1110011i11101010 10100130110001101 1001111101011010 1011000000110001

11001010101001110001001100110000 1010000011010111 0110111010111111

101000111100011I 1100100100111011 1101011100100110 0111100111100001

00110011001111110001000000000111 1100011110110110 1001010000010010

Bit count: I:133 0:I23

We could create an internal array of the same size, and copy the file array item-by-item into

BIRD Reference Manual - 45 -

%

it:

BIRD> Create Array INTERNAL 1024 256

A_aymtemal contalns1024addresses

B[RI)>Do $i 1 1024

DO> Assign Address INTERNALS1 TESTS1

DO> End

(Though this copying is done easier using the Assign Array command.)

Create Memory <name> {<address-size>} {<data-size>}

This command creates new memory. The memory is assigned the name <name>. The ad-

dress size and data size arguments are optional; if not given, the default address size and data size
are used.

For example, we can create a new memory with the command:

B_D>Create Memory Tweety 256 256

Memory Tweety, 1024 locations, size 256/256

If the defaults were already set to an address size of 256 and a data size of 256, we could

have typed to get the same result:

BIRD>Create Memory Tweety

Memory Tweety, 1024 locations, size 256/256

If we try to create two memories with the same names, the program signals an error and

refuses to create the new memory:

BIRD> Create Memory Tweety

Memory Tweety, 10241ocations, size256/256

BIRD> Create Memory rweety

?Memo_ Tweetyakeadyexis_

Creation of a memory automatically creates a new address array. The address array is given

the name of the memory if possible. Thus, a memory created with the name ARF allows us to ref-

erence the tenth location address with the address tag "ARF10".

The location addresses of the current active memory can be referenced using the tag "L";

thus, the tenth location addresses can be referenced with "L10".

Create State-File

(This command is not yet functional in BIRD 3.0.)

- 46- BIRDReferenceManual

Create Variable <variable> [<function> I <variable> l <number>]

This command creates a new variable of the given name. For example, we could rewrite

the above example to be more descriptive:

BIRD> Create Variable $Radius 112

BIRD> Set Memory Radius SRadius

BIRD> Address 1010-

Selected241oca_ons, ra_ususedwas112

Define <name> {Variable <variable>} {Variable <variable>} {Variable <variable>

{ Variable <variable> } {Variable <variable> } {Variable <variable> }

{ Variable <variable> } {Variable <variable>} {Variable <variable> }

This command is used to define new top-level commands. The arguments allowed are cur-

rently all variables; when the command is given by the user, the user's arguments are bound to
these variables, then the command is executed.

It is usually more efficient to define a command rather than to constantly use the Input File

command.

For example, we could create the Fill command, which writes a given number of random

data patterns into the memory at random locations:

BIRD> Define Fill Variable SHow-Many

DEFINE> Dotimes SHow-Many

DOTIMES2> Address Z Silently

DOT_S2> Write z

DOT[MES2> End

DEFINE> End

At this point, the Fill command is defined. We can now f'fll the memory with a given num-

ber of patterns with:

BIRD> Fill I00

You can see all command definitions using the Show All Definitions command. You can

see a specific definition using the Show Definition command.

Delete [Address ! Array I Definition I Memory I State-ID 1Variable]

This command is used to delete objects created by the Create or Define command. See the

specific help for the given type of deletion for more details.

Delete Address <address>

BIRD Reference Manual - 47 -

This command deletes the given address from the system. The address must have been pre-

viously created using the Create Address command.

Delete Array <address-array>

This command deletes the given address array from the system. The address army must

have been previously created using the Create Array or Create Alias commands.

Delete Definition <defined-command>

This command deletes the given defined command from the system. The command must

have been previously created using the Define command.

Delete Memory <name>

This command deletes the given memory name and reclaims the resources used by that

memory.

(This command is not yet functional in BIRD 3.0.)

Delete State-ID [<ID-number> 1<variable>] <oldflle>

(This command is not yet functional in BIRD 3.0.)

Delete Variable <variable>

This command deletes the given variable name from its table of variables. Variables are

fairly inexpensive to keep around, so you shouldn't need to worry about this command unless you

are used to cleaning up after yourself.

(Some system-created variables are undeletable; the system will signal an error and refuse

to delete them if you try.)

Do <do-variable> {<start> l <variable>} {<end> l <variable> } {<step> l <variable>}

A more complex iteration command is the Do command. It repeatedly executes a block of

commands, but also assigns a variable to a new value for each iteration.

The do variable is the name of a currently existing variable. The next argument is the start-

ing value of the do variable; if not given, this defaults to "1". The next argument is the final value

of the do variable; when the iteration results in a variable value over this number, the command

finishes. This value defaults to "1" if not given. The final argument is the step size, which is the

amount by which the do variable is incremented each step. The value defaults to "1" if not given.

For example, the following commands print a text string and the iteration number:

- ,48 - BIRD Reference Manual

BIRD> Do

DO> Echo

DO> End

ARF: 1

ARF: 2

ARF: 3

$113
ll • IVARF. $I

The Do command is useful for manipulating address arrays. If an army name ends with the

name of an integer variable, the variable is replaced by its value. For example, we could write a
memories own location addresses to itself:

BIRD> Create Variable SNOL Array-Size L

BIRD>Do $i 1 SNOL

DO> Address L$1

DO> Write L$1

DO> End

[Print out of each addressing operation follows]

In this sequence, "L$1" is replaced each step by the value of "$1"; for example, if the value

of "$1" is 123, then "L$1" is equivalent to L123, which is the address of the 123rd memory loca-

tion.

DoTimes [<number> I <variable>]

The is the simplest iteration command; it simply repeats the execution of a given block of

commands a given number of times:

BIRD> Dotimes

DOTD_ES> Echo

DOTIMES> End

ARF?

ARF?

ARF_

First, the DoTimes command is entered along with the number of iterations; the user is

placed into command-input mode. This mode change is made apparent to the user by a change of

prompt to DOTIMES>. Next, the user inputs a command sequence, in this case, the single Echo

command, then terminates the input with an End command. At this point the command is executed

the given number of times.

Echo {To-TTY I No-CR l <string> } {<string>} {<string>} {<string>} {<string>} {<string>]

{<string> } {<string>} {<string> }

This command echoes the given series of strings to the current echo device, followed by a

carriage return. By default, the echo goes to the terminal; however, it can be reset using the Out-

BIRDReferenceManual -49-

put Echo and Push Output Echo commands.

If the string is a variable name, then the value of that variable is printed rather than the

string. For example:

BIRD> Do

DO> Echo

DO> End

ARF: i

ARF: 2

ARF: 3

$113

"ARE: " $i

If the fLrst argument of Echo is To-TTY, then the echo is done to the TrY no matter what

echo device is set. If the f'u'st argument of Echo is No-CR, then the echo is done to the TTY with-

out a carriage return.

Echo is commonly used in script files to let the user know what is happening.

Else

The else command is only legal inside of an If command block. For example:

BIRD> If Same R 1010-

IF> Echo "The addresses

IF> Else

IF> Echo "The addresses

IF> End

are the same"

are not the same"

This sequence of command will print out a message every time it is executed, but the mes-

sage printed will vary depending on whether the addresses are the same or not.

End

The End command is used to end a block of input from Define, Do, DoTimes, If, and

While. It is also used to end a command level initiated with the Exee BIRD command.

Exec [BIRD I Program I Restart I Unix]

This command is used to execute new system command levels, UNIX programs or shells,

or to restart the program. See the specific help for the given type of Exee command for more de-

tails.

Exec BIRD

This command executes a new command level of the BIRD executive. This is most useful

in command files, where you wish to allow the user a chance to interact with the program before

- 50- BIRDReferenceManual

continuingwith thecommandscript.

ExecProgram <string>

This commandtriesto executethegivenprogramname.Whencompleted,theuseris re-
turnedto theBIRD program.

BIRD>Exec Program date

Wed Jan 3 16:10:13 PST 1990

Exec Restart

This command restarts the BIRD program from scratch. All current state is lost.

Exec UNIX

This command starts off a UNIX shell and leaves the user there. Upon exiting that shell,

the user is returned to the BIRD program.

Genetic {No-Address I <address>}

This command attempts to do one genetic recombination of the location addresses in the

current memory. Still pretty experimental.

Help {On-Topic <topic-name> I <defined-command>}

The Help command is used to access on-line help documents.

For most commands, you simply type the keyword sequence to get the help document. For

example, to get help on the Set Status command, type;

BIRD>Help set status

[Lots of help.]

The On-Topic keyword is used to access help files that are not directory associated with a

given command.

If [<function> 1<variable> I <number>]

This command is used to conditionalize a sequence of commands. "True" is defined as a

non-zero value, and "false" a zero value. Thus, "If 1" always executes its block of commands, and
"If 0" never executes its block of commands.

For an example of the use of this command, we may wish to print out a message whenever

the read address (kept in the address tag "R") and the written address:

BIRD Reference Manual -51 -

BIRD> If Not Same R 1010-

IF>Echo "The addresses are not the

IF>End

same"

It is also possible to use the Else command to separate the block of commands into two sec-

tions, the f'u'st of which is executed if the condition is true, and the second executed if the condition

is false. For example:

BIRD> If Same R 1010-

IF> Echo "The addresses are the same"

IF> Else

IF> Echo "The addresses are not the same"

IF>End

This sequence of command will print out a message every time it is executed, but the mes-

sage printed will vary depending on whether the addresses are the same or not.

Initialize Memory {Old-Addresses I New-Addresses I Using-Address-Array <array> I From-

Memory <memory-name>}

This command initializes the current memory. If we specify Old-Addresses, the current

location addresses in the memory are not changed. If we specify New-Addresses, the memory is

given new random location addresses. If we specify Using-Address-Array, the addresses are set

from the addresses in the given address array. If we specify From-Memory, the addresses are tak-

en from the addresses of the given memory.

Input [Address I File l Memory I State-Info]

This command is used to input objects in the BIRD environment from external files. See

the specific help for the given input command for more details.

Input Address <address> <oldfile>

This command inputs a single address from a file. The address file can be created using the

Output Address command.

Input File <oldfile> {Verbosely I Silently}

This command assumes that the given file name is a file of BIRD commands. It opens the

file and executes the commands until it reaches end of file.

The default is to show you the commands as they axe executed. If you specify the second

argument to Silently, the commands are not shown, though any typing that the commands do is

still printed to the terminal.

Input Memory <oldfile>

- 52 - BIRD Reference Manual

No name is needed; the memory is given the original name it had when saved. If that name

conflicts with a memory already in use, the string "New-" is prepended to it. For example, if we

had previously saved a memory named "Tweety" in f'tle Tweety.memory, we could type:

BIRD> Input Memory Tweety.memory

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Tweety, 0 writes, created Fri Dec 29 12:44:07 1989

Input State-Info [<state-ID> l <variable>]

(Not yet fully implemented.)

Mutate [Location-Addresses]

This command currently has only one argument, which must be Location-Addresses. It is

used to change a given number of bits in each location address.

Mutate Location-Addresses [<#-of-bits> I <variable>]

This command causes the given number of bits to be changed in each location address.

Output [Address I Alias-Mapping I Array I Array-Mapping I Command-Echo I

Command-Record I Echo 1Location-Addresses I Memory I Session]

This command is used to output objects from the BIRD environment to external files. See

the specific help for the given output command for more details.

Output Address <address> <newfile> {Binary I Hex}

This command outputs a single address to a file in the given format. It can later be read

back into the system using the Input Address command. Default is Hex.

Output Alias-Mapping <alias-array> <newfile>

This command outputs the currently active alias mapping of the array to the given file. This

mapping is set up using the Create Alias command. This alias mapping is a copy of the mapping

in force on the source array at the time the alias is created.

Output Array <address-array> <newfile> {Binary I Hex}

This command outputs a address array to a file in the given format. It can later be read back

into the system using the Create Array command. Default is Hex.

Output Array-Mapping <address-array> <newfile>

BIRDReferenceManual - 53-

This commandoutputsthecurrently activemappingof thearray to the given file. This
mappingis setup usingtheReorder command.

Output Command-Echo<newfile>

This command redirects the command-echo output to the given file name. Command

prompts and your typing will now go into this file rather than to the TI'Y. However, command

results will still be printed to the "ITY.

Output Command-Record <newfile>

This command redirects a record of all executed commands to the given file name.

Output Echo <newfile>

This command redirects the echo output file to the given file name. Future output of the

Echo command will go to this file.

Output Locations-Addresses <newfile> {Binary I Hex}

This command outputs all of the location addresses of the currently active memory to the

given file. They can later be restored in a memory using the command sequence Create Array

followed by Initialize Memory Using-Address-Array. Default is Hex.

BIRD> Output Location-Addresses LOCS Binary

[Then, muchlater...]

BIRD> Create Array locs LOCS

Arraylocscontalns1024addresses

BIRD> Initialize Memory Using IOCS

Output Memory <newfile> {Binary I Hex}

This command takes the current memory and outputs it to the given filename. That mem-

ory file can later be restored using the Input Memory command. Default is Hex.

The memory file itself is an ASCII file that can be transferred from machine to machine.

While bulky, this is intentional: the desire was to allow a memory to be created using one simula-

tor, and then loaded into another simulator, which may be residing on a different computer. A

"transfer" of a memory currently in BIRD to another simulator can be done by saving the memory,

setting a new default hardware type, and reading the memory back in:

BIRD> Output Memory Testl.memory

BIRD> Set Default Hardware Connection-Machine

BIRD> Input Memory Testl.memory

-54. BIRD Reference Manual

[Addresses: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

[Counters: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%]

Memory New-Testl, 333 writes, created Fri Dec 29 I2:44:07 1989

BIRD> Show All Memories

Memory New-Testl, 8192 locations, size 256/1, on Connection Machine

Memory Testl, 8192 locations, size 256/1

In this way, a memory can be "copied".

Output Session <newfile>

This command redirects the session output file to the given file name. Future output will

go to that file.
,:

The session output contains copies of the commands executed and the results of those ex-

ecutions. The results of the execution are not printed to the terminal.

For example, you can get the copy of a given command using the sequence:

BIRD> Output Session STATUS

BIRD> Show Status

BIRD> Output Session TTY

At this point, the file STATUS contains the following:

BIRD> Show Status

Set Command-Timing False
Set Print-Text-With-Addresses False

Set Random Seed 631408685

Set Random Address-Seed 333

Set Random Dont-Care-Bits-On 0

Set Random Address-Bits-On Random

Set Weather-Expansion 1

BIRD> Pop Output Session

Plot [Address ! Array [Data-File I Memory]

This command tries to create aplot file for the given object. This plot file may be displayed

or saved for later use. See the specific help for the given plot command for more details.

Plot Address <address> <address-array> {Distances I Integrated-Distances I Both }

This command plots the distribution of distances between the given address and the ad-

dresses in the given array. You can plot the distance distribution, the integration of the distance

distribution, or both. It creates the files Address-info.data and Address-info.plot. If possible, it

displays the created plot file. Example:

BIRDReferenceManual - 55-

BIRD> Plot Address I010- W Distances ; This plots the distance from

; 10101010... to each weather

;address

Plot Array <array-l> <array-2> {Distances IIntegrated-Distances I Both}

This command plots the distribution of distances between the address and the addresses in

the given array. You can plot the distance distribution, the integration of the distance distribution,

or both. It creates the files Array-info.data and Array-info.plot. If possible, it displays the created

plot file. Example:

BIRD> Create Alias WA W 1 I00

BIRD> Create Alias WB W i01 200

BIRD> Plot Array WA WB Distances

; Create 100 element array WA

; Create 100 element array WB

; This plots the distance distribution

; between elements of WA and WB

Plot Data-File <oldfile>

This command creates a plot file from the given data file. It does NOT try to plot the gen-

erated plot f'de.

Plot Memory [Distances I Location-Weights I Number-Of-Writes]

This command tries to create a plot file for the given memory object. This plot file may be

displayed or saved for later use. See the specific help for the given command for more details.

Plot Memory Distances {Distribution IIntegrated-Distribution I Both}

This command plots the distribution of distances between the last Address operation and

the memory locations. You can plot the distance distribution, the integration of the distance distri-

bution, or both. It creates the files Memory.dists.data and Memory.dists.plot. If possible, it dis-

plays the created plot file.

Plot Memory Location-Weights {Distribution I Integrated-Distribution 1Both }

This command plots the distribution of average location weights for each memory location.

The "weight" is a measure of how predictive the location is. You can plot the distribution, the in-

tegration of the distribution, or both. It creates the files Memory.loc-weights.data and Memory.-

loc-weights.plot. If possible, it displays the created plot file.

Plot Memory Number-Of-Writes {Distribution I Integrated-Distribution I Both}

This command plots the distribution of number of writes to each memory location. You

can plot the distribution, the integration of the distribution, or both. It creates the files Memory.-

hum-writes.data and Memory.num-writes.plot. If possible, it displays the created plot file.

- 56- BIRDReferenceManual

Pop [Output I Variables]

This command undoes the effect of a previously-given Push command. See the specific

help for the given command for more details.

Pop Output [Command-Echo I Command-Record I Echo l Session]

This command undoes the effect of a previously-given Push command. See the specific

help for the given command for more details.

Pop Output Command-Echo

This command restores the state of the command echo to that which was in place before the

last Push Output Command-Echo command.

Pop Output Command-Record

: This command restores the state of the command recording to that Which was in place be-

fore the last Push Output Command-Record command.

• _, ¶

Pop Output Echo

Thiz_cohmaaiidr_stores the state of the echo to that which was in place before, the last Push .

Output Echo_"_rr_anck -.

Pop Output bn-Se_'b " _i__i_'_- ii=_'_:

T.15is command restores the state of the session recording to that which was in place before

the last Push Output Session command.

Pop Variables {<variable>} {<variable>} {<variable>} {<variable>} {<variable>} {<vari-

able> } {<variable> } {<variable>} {<variable> } {<variable> }

The Pop Variable command restores the original value of a variable before a previous

Push Variable command. The Pop Variable command can take up to 9 variables to pop.

Variable pushing and popping is mostly used in script files to avoid smashing the values of

variable between script files.

Print [<address-op> l <address>]

This command takes one argument, which is the address to print. The address is printed

along with the a count of the number of bits of each type. For example, we could print the address

of location 1:

ORIGINAL PAGE 15
OF POOR QUALITY

BIRD Reference Manual - 57 -

BIRD> Print L1

Address:

1011010001111110 0110101000001101 1011101010110000 1000110001011011

0001010101010000 1110001111011111 0011111001111101 0010100000000110

0011100010001110 1111111001011011 1000011011101011 0110000100110110

1001001111101101 0111010110010000 1111100101110001 1000100000010000

Bit count: 1:130 0:126

Push [Output I Variable]

This command is used to push the level of some object; a following Pop command restores

the state. See the specific help for the given command for more details.

Push Output [Command-Echo I Command-Record I Echo l Session]

This command is used to push the level of an output device; a following Pop command

restores the output device to its previous state. See the specific help for the given command for

more details.

Push Output Command-Echo [<newfile> I Error-Output I TTY INull]

This command pushes the command-echo output to the given file name. Command

prompts and your typing will now go into this file rather than to the TrY. However, command

results will still be printed to the TrY.

Push Output Command-Record [<newfile>l Error-Output I TTY I Null]

This command pushes a record of all executed commands to the given file name.

Push Output Echo [<newfile> I Error-Output I TTY [Null]

This command pushes the echo output file to the given file name. Future output of the Echo

command will go to this file.

Push Output Session [<newfile>l Error-Output I TTY I Null]

This command pushes the session output file to the given file name. Future output will go

to that file.

The session output contains copies of the commands executed and the results of those ex-

ecutions. The results of the execution are not printed to the terminal.

For example, you can get the copy of a given command using the sequence:

BIRD>Push Output Session STATUS

- 58 - BIRD Reference Manual

BIRD> Show Status

BIRD> Pop Output Session

At this point, the file STATUS contains the following:

BIRD> Show Status

Set Command-Timing False
Set Print-Text-With-Addresses False

Set Random Seed 631408685

Set Random Address-Seed 333

Set Random Domt-Care-Bits-On 0

Set Random Address-Bits-On Random

Set Weather-Expansion 1

BIRD> Pop Output Session _

Push Variable <variable> [<function> l <variable> l <number>]

The Push Variable command pushes a new value onto the given variable name; future ref-

erences to that variable will use that new variable. However, the old value is retained, and is re-

stored when the Pop Variable command is given. This command is useful when you wish to use

a variable, but are not sure if other routines have already assigned its value.

Variable pushing and popping is mostly used in script files to avoid smashing the values of

variable between script files.

Quit {Program I Input-File I Connection-Machine}

This command is used to quit, either the BIRD program or just input from a given input file.

The special command Quit Connection-Machine is only useful when using the Connec-

tion Machine version of the simulator; it runs the system program "cmdetach" to detach the Con-
nection Machine from the user.

Read {<address>} {Verbosely I Silently}

The Read command takes two arguments: an optional address, and an optional keyword.

This command reads the memory; if no second argument is given, the command prints the read

address. If a second argument is given, the read address is compared against that address and the

distance between them is printed.

The second argument to Read is optional; it determines whether the command will print

out distance information when the read operation is completed. The default is for that information

to be given.

BIRD>Create Memory Test

Memory Test, 1024 locations, size 256/256

; Memory named "Test"

BIRD Reference Manual - 59 -

BIRD> Address 1010-

Selected211ocafions, mdiususedwaslll

BIRD> Write 11110000-

BIRD> Read

Read dam

1111000011110000111100001111000011110000111100001111000011110000

1111000011110(0)0111100001111000011110(0)0111100001111000011110000

11110000111100(0111100001111000011110000111100001111000011110000

1111000011110000111100001111000011110000111100001111000011110000

Address with I010...

Write

See if it's there

It is sometimes difficult to manually study the read data pattern for errors; in this case, you

can use the first argument to Read to compute the distance between the read address and any given
address:

BIRD> Read IIIi0000- ; Compare

Distanceis0

BIRD> Read IIiiiiii- ; Compare against

Distanceis128

its

The Read command, when given with an address argument, sets the variable $DISTANCE

to the value of the distance between the read address and the argument address.

Reorder <array-name> [Offset [<number> I <variable>] I Original-Order I Randomly I

Reverse I Same-Order-As <array-name> I Using-Map-File <oldfile>]

The Reorder command is used to reorder address arrays.

For example, if we had a array defined from a file that we wish to write to memory, we

would want to reorder the array before retraining, so that the training would not depend on the order

of presentation.

The following are legal Reorder subcommands:

Reorder <array> Original-Order

This command removes any previous reorder commands and restores the array to its orig-

inal order.

Reorder <array> Reverse

This command removes any previous reorder commands and orders the array in reverse or-

der, that is, the last element is 1, the second to the last is 2, etc.

Reorder <array> Offset [<number> I <variable>]

This command offsets the current ordering by the given number, that is, the pointer that

pointed to element n now points to element n + offset. The pointer wraps back to the beginning

of the array when the new pointer points off the end of the array.

- 60- BIRD Reference Manual

Reorder <array> Same-Order-As <source-array>

This command removes any previous reorder commands and orders the array in the same

ordering as the source array.

Reorder <array> Using-Map-File <oldfile>

This command removes any previous reorder commands and orders the array in the order

stored in the map file. The map file was previously generated using the Output Mapping com-
mand.

Set [Active-Memory I Default I Directory I Erase-Weather-Codes I Genetic I

Location-Info i Memory I Plot I Print-Text-With-Addresses ! Random I

State-Info I Storage-Checking I System IWeather-Expansion]

This command is used to set the parameters of the BIRD system, See the specific help for

the given command for more details.

Set Actlve-Memory <memory-name>

For example, the following sequence of commands creates two memories, then activates

each of them in turn and does an addressing and write operation:

BIRD>Create Memory Test-A 256 256

Memory Test-A, 1000 locations, size 256/256

BrP,D>Create Memory Test-B 256 256

Memory Test-B, 1000 locations, size 256/256

BIRD> Set Active-Memory Test-A

BIRD>Address ll00-

Selected 19 locations, radius used was 111

BIRD> Write 11110000-

BIRD> Set Active-Memory Test-B

BIRD> Address ll00-

Selected 18 locations, radius used was 111

BIRD> Write IIii0000-

Address at ii001100...

Write iiii000011110000...

Write the same as for Test-A

It is possible to create the different memories on different hardware devices; thus, you

could create one memory on the Connection Machine, and one memory on the front-end computer

using the software simulator, and compare their results.

Set Default [Address-Size [Address-Type I Area I Counter-Type I Data-Size I

Dont-Care-Bits I Folds I Full-Info I Hardware I History-Delay I History-Size I

Ignore-Exact-Matches [Input-Mask INumber-Of-Locations I Output-Type I Radius I

Random-Seed IReference-Type I Threshold [Type-Of-Addressing]

This command is used to set the parameters for future Create Memory commands.

the specific help for the given command for more details.

See

BIRD Reference Manual - 61 -

Set Default Address-Size [<number> I <variable>]

This sets the default address size for future memories. The address size is the number of

bits used for addressing the memory. The initial value for this default is 256.

Set Default Address-Type [Bit-Addresses[Float-Addresses]

This command sets the default address type for memories. Currently, only Bit-Addresses

are fully functional, though the software simulator has some functions that allow Float-Addresses.

Set Default Area [<number> I <variable>]

When area-based addressing is used, this command sets the default desired area, that is, the

desired number of selected locations, for future memories. The initial value for this defauIt is 15.

Set Default Calculate-Weights [True [False]

My work on the statistics of data counters allows a value called a weight to be associated

with each data counter. The weight is a measure of how predictive the data counter is. Depending

on this weight, a given counter may "vote" for a "1" bit value (if it is predicting above the mean)

or a "0" bit value (if it is predicting below the mean).

This command is currently only functional using the software simulator and the Connection

Machine simulator.

Set Default Counter-Type [161 32 18] [Float I Integer]

This command sets the type of data counter we wish to have. Depending on the simulator,

the chosen value may or may not be available. If not available, the system tries to use the "nearest"

legal choice.

Set Default Data-Size [<number> I <variable>]

This sets the default data size for future memories. The data size is the number of bits used

for reading from and writing to the memory. The initial value for this default is 256.

Set Default Dont-Care-Bits [Random I <#-of-bits> I <variable>]

This command sets the number of dont-care bits in the location addresses. If we give it a

specific number, then that exact number of dont-care bits (randomly selected) is in each location

address. If Random, then a random number of dont-care bits are placed in each address.

Set Default Folds [<number> I <variable>]

(Not implemented yet.)

- 62 - BIRD Reference Manual

Set Default Full-lnfo [True] False]

This tells the memory whether we wish to calculate full information concerning the write

operation, specifically, the number of writes information.

This is only useful with the Stanford simulator.

Set Default Hardware [Software-Simulator I Connection-Machine I

Stanford-Hardware]

This sets the default number of locations for future memories. The address size is the num-

ber of bits used for addressing the memory. The

For example we can set the defaults for memory creation to make a memory with 200 ad-

dress bits, 10 data bits, and 8192 locations, and to use the Connection Machine:

BIRD> Set Default

BIRD> Set Default

BIRD> Set Default

BIRD> Set Default

Address-Size 200

Data-Size i0

Number-Of-Locations 8192

Hardware Connection-Machine

Set Default History-Delay [<number> I <variable>]

The history delay is used in conjunction with Set Default History-Size to set the number

of steps we delay before using a previous address. For example, with a delay of 0 and a size of 3,

the address is composed of the current address, the previous address, and the second previous ad-

dress. With a delay of i, the address is composed of the current address, the second previous ad-

dress, and the fourth previous address.

If this seems too complex, then just ignore it. It's designed to make things easier for some

experiments.

Set Default History-Size [<number> I <variable>]

The history size is the number of past addresses we wish to include into the full address.

That is, the actual address used in the memory is a combination of the address used in the Address

command with past addresses given to that command.

If this seems too complex, then just ignore it. It's designed to make things easier for some

experiments.

Set Default Ignore-Exact-Matches _rue I False]

There are occasions where we wish to use a location address of a memory for a reference

address, but wish to keep that location from being selected. For example, the memory may be do-

ing a nearest-neighbor search, and we do not wish for the test sample to be included in the response.

BIRDReference Manual - 63 -

This command allows us to rule out from selection any location which has a distance from the ref-

erence address of 0.

Set Default Input-Mask [<address> [None]

The input mask is a set of bits that we should ignore during the addressing operation. Nor-

really, the hamming distance is calculated using all the bits in the sample address; the input mask

says that some of the bits should be ignored, that is, always match during the hamming distance

calculation. You will have to readjust the radius after you do this.., the more bits are masked, the

greater the number of addresses will be within a given radius. This command sets the given mask
as the default mask for future memories.

Giving the keyword None as the argument unmasks aU the bits. The initial value of this

default is None.

Set Default Number-Of-Locations [<number> I <variable>]

This sets the default number of locations for future memories. The program will attempt

to create future memories with that many hard memory locations.

Set Default Output-Type [Bit-Addresses [Float-Addresses]

(This command not yet functional).

Set Default Radius [<number> I <variable>]

When standard radius-based addressing is used, this command sets the default radius for
future memories. The initial value for this default is 111.

Set Default Random-Seed [<number> I <variable>]

This sets the random seed that is used to generate the location addresses. This allows the

user to create two memories with exactly the same location addresses.

Set Default Read-From [Array <array-name> <start-index>[Counters I Location-Addresses]

This command sets the default for where Read operations get their data.

Array uses the array as a table of addresses; at read-time, the selected locations are col-

lected and returned as the output. The starting point for the array can be offset from the default

value 1; the array must be long enough to have an array address for each memory location.

Counters makes the standard model sparse distributed memory.

Location-Addresses uses the array of location addresses for the current memory as the

read array.

- 64 - BIRD Reference Manual

Once the memory has been created, the type of reading cannot be changed.

Certain memory operations that refer specifically to counters cannot be used for memories

that are not counter-based. For example, Set Default Counter-Type is not useful if the memory

is not counter-based.

Set Default Reference-Type [Bit-Addresses I Float-Addresses]

This is the type of address that the user will be giving the memory. For example, it may be

useful for the user to be able to give a memory with binary location addresses a floating address.

Not implemented in all simulators.

Set Default Scaled-Distances [True [False]

This command causes distances to be scaled before selection is done. It is used in combi-

nation with locally-scoped radii in order to make area-based addressing work.

Not implemented in all simulators.

Set Default Threshold [<number> I <variable> I Type]

The threshold of a memory is the number the memory uses to determine whether the data counter

sum represents a "0" or a "1" in the read address. The initial value for this default is 0.

Set Default Type-Of-Addressing [Area IRadius]

The Kanerva model assumes that the location addresses are randomly placed. When this is

true, statistics operate well so that any address contains roughly the same number of locations with-

in a given radius.

When the location addresses are not randomly placed, this is no longer true, and a one given

address may select many more locations than another address. Because of this breakdown, I pro-

posed the use of area-based addressing. Specifically, area-based addressing selects the radius only

once the address is given to the Address command; it selects the radius to get as close to a desired

number selected locations as possible. The initial value for this default is Radius.

Set Directory <name>

This command sets the current working directory for the BIRD program.

Set Erase-Weather-Codes [True I False]

This flag tells whether the weather addresses contain information from the weather codes

fields.

BIRDReferenceManual -65-

SetGenetic

Thiscommandis usedto setparametersfor thegeneticsystem.Not yetfully documented.

SetLocation-Info [<location-index>I<variable>]

This commandassignsthevaluesof a numberof variableswith location-relatedinforma-
tion. Thevariablessetare:

$Number-of-writes
$Location-distance
$Location-selected
$Location-radius
$Location-birthdate
$Location-avg-vote
$Location-weight

SetMemory [Area I Calculate-Weights I Counter I Dont-Care-Bits I Full-Info 1

Ignore-Exact-Matches I Input-Mask ILocation I Output-Type IRadius IRandom-Seed

I Reference-Type I Scaled-Distance I Scope-Of-Radius I Threshold 1

Type-Of-Addressing]

This command is used to set the parameters for the current active memory. See the spe-

cific help for the given command for more details.

Set Memory Area {Automatically I <number>l<variable>}

When area-based addressing is used, this command sets the desired area, that is, the desired

number of selected locations. Experiments by Kanerva suggest that a reasonable number of loca-

tions is 1/2 * sqrt (number of locations); thus, for a 1000-location memory, an area of 1/2 * sqrt

(1000) or 16 locations would be useful:

BIRD> Set Memory Area 16

Future Address commands will now use this area in calculating the set of selected loca-

tions, when the memory has been set to area-based addressing mode.

If the keyword Automatically is given, the program calculates what is considers a reason-

able area, and uses that value.

Set Memory Calculate-Weights [True I False]

My work on the statistics of data counters allows a value called a weight to be associated

with each data counter. The weight is a measure of how predictive the data counter is. Depending

on this weight, a given counter may "vote" for a "1" bit value (if it is predicting above the mean)

°66- BIRDReferenceManual

or a "0" bit value(if it is predictingbelowthemean).

Thiscommandiscurrentlyonly functionalusingthesoftwaresimulatorandtheConnection
Machinesimulator.

Set Memory Counter [<location-index> I <variable>] [<bit-index> I <variable>] [<value> I

<variable>]

This command sets the value of the given location counter.

Set Memory Dont-Care-Bits [Random I <#-of-bits> I <variable>]

This command sets the number of dont-care bits in the location addresses. If we give it a

specific number, then that exact number of dont-care bits (randomly selected) is in each location

address. If Random, then a random number of dont-care bits are placed in each address.

Set Memory Full-Info [True I False]

This tells the memory whether we wish to calculate full information concerning the write

operation, specifically, the number of writes information.

This is only useful with the Stanford simulator.

Set Memory Ignore-Exact-Matches [True I False]

There are occasions where we wish to use a location address of a memory for a reference

address, but wish to keep that location from being selected. For example, the memory may be do-

ing a nearest-neighbor search, and we do not wish for the test sample to be included in the response.

This command allows us to rule out from selection any location which has a distance from the ref-
erence address of 0.

Set Memory Input-Mask [<address> I None]

The input mask is a set of bits that we should ignore during the addressing operation. Nor-

mally, the hamming distance is calculated using all the bits in the sample address; the input mask

says that some of the bits should be ignored, that is, always match during the hamming distance

calculation. You will have to readjust the radius after you do this.., the more bits are masked, the

greater the number of addresses will be within a given radius.

Giving the keyword None as the argument unmasks all the bits.

Set Memory Location [<location-index>l<variable>] <address>

This command sets the location address of the given memory location to the given address.

Set Memory Output-Type [Bit-Addresses I Float-Addresses]

BIRDReferenceManual - 67-

(Thiscommandnotyet functional).

Set Memory Radius {Automatically I <number> I <variable>]

When standard radius-based addressing is used, this command sets the radius. For exam-

ple, we may decide that we wish to have a larger radius for our 256-bit address size memory than

the standard radius of 111 bits; we could change it by:

BIRD> Set Memory Radius 114

Future Address commands will now use this new radius in calculating the set of selected

locations.

If the keyword Automatically is given, the program calculates what is considers a reason-

able radius, and uses that value.

Set Memory Random-Seed [<number>l <variable>]

This sets the random seed that is used to generate the location addresses. This allows the

user to create two memories with exactly the same location addresses.

Set Memory Reference-Type [Bit.Addresses I Float-Addresses]

This is the type of address that the user will be giving the memory. For example, it may be

useful for the user to be able to give a memory with binary location addresses a floating address.

Not implemented in all simulators.

Set Memory Scaled-Distances [True I False]

This command causes distances to be scaled before selection is done. It is used in combi-

nation with locally-scoped radii in order to make area-based addressing work.

Not implemented in all simulators.

Set Memory Scope-Of-Radius [Global 1Local]

This command sets the scope of the radius in a memory. Global scope is standard; all lo-

cations use the same global radius in calculating whether they axe selected. Local scope means

that each location has its own radius.

Not implemented in all simulators.

Set Memory Threshold [<number> I <variable>l Type]

Set Memory Threshold Type [Average-Value I Number I Winner-Take-All I Zero]

- 68- BIRDReferenceManual

The thresholdof amemoryis thenumberthememoryusesto determinewhetherthedata
countersumrepresentsa "0" or a "1" in thereadaddress.Thedefaultis zero; if thedatasumis
greaterthanor equalto zero,that bit is takento bea "1", elseit is takento bea"0". Zeroisa good
thresholdonly if that bit is, on theaverage,"0" half thetime and"1" half thetimein thewritten
dataaddresses.

Therearesomeadditionalthresholdingtypesthatmaybeuseful. Settingthethresholdtype
to Average.Value triesto usetheaverageinput valueof eachbit in settinga threhold. Eachbit
hasits own threshold.

SettingthethresholdtypetoWinner-Take-All hasthesystemsetathresholdsothatonly
one bit is left "1". This is usefulonly if weknow thatthedatawasin thatformat.

Setting the thresholdtype to Number simply usesthe numbergiven by the userasthe
threshold.

Settingthethresholdtypeto Zero is the same as using type Number with a threshold of 0,

but may be faster in some implementations.

Set Memory Type-Of-Addressing [Area I Radius]

The Kanerva model assumes that the location addresses are randomly placed. When this is

true, statistics operate well so that any address contains roughly the same number of locations with-

in a given radius.

When the location addresses are not randomly placed, this is no longer true, and a one given

address may select many more locations than another address. Because of this breakdown, I pro-

posed the use of area-based addressing. Specifically, area-based addressing selects the radius only

once the address is given to the Address command; it selects the radius to get as close to a desired

number selected locations as possible. The default type of addressing is Radius; to use area-based

addressing, type:

BIRD> Set Memory Type-of-addressing Area

Set Plot [Bottom-Title I Left-Title I Top-Title I Display I Pixrect-Also I X-Dimensions I

Y-Dimensions]

This command is used to set the parameters for the next plot-related command. See the

specific help for the given command for more details.

Set Plot [Bottom-Title <string> I Left-Title <string> I Top-Title <string>]

This command sets the title strings along the borders of a plot.

Set Plot Display [True ! False]

BIRD Reference Manual - 69 -

This command sets whether we wish to try to immediately display all plot files as they are

created.

Set Plot Pixrect-Also [True I False]

This command tells the BIRD program whether to create SUN pixrect files whenever a plot

file is created.

Set Plot X-Dimensions [Machine-Settable I <start> <finish>]

This command sets the X-dimensions for future plot calls. Machine-Settable allows the

machine to select appropriate coordinates.

Set Plot Y-Dimensions [Machine-Settable I <start> <finish>]

This command sets the Y-dimensions for future plot calls. Machine-Settable allows the

machine to select appropriate coordinates.

Set Print-Text-With-Addresses [True I False]

The Print command normally does not try to print an address as text. This switch causes

the command to try to print out all addresses as text along with the standard printout.

Set Random [Address-Bits-On I Address-Seed I Dont-Care-Bits-On I Seed]

This command is used to set the parameters for system randomness. See the specific help

for the given command for more details.

Set Random Address-Bits-On {Random I <#-of-bits>l <variable>}

This sets the number of address bits we wish to have "1" in the random "Z" addresses.

Random means set a random number of "1" bits.

Set Random Address-Seed {Random I <#-of-bits>l <variable>}

This sets the random seed used to generate randomness in the "Z" addresses. This allows

the user to set a seed to reproduce a sequence of random addresses.

Set Random Dont-Care-Bits-On {Random I <#-of-bits> I <variable>}

This sets the number of dont-care bits we wish to have on in the random "Z" addresses.

Random means set a random number of dont-care bits on.

Set Random Seed {Random I <#-of-bits>l <variable>}

- 70- BIRDReferenceManual

Thissetstherandomseedfor futurecalls to random. By setting to random seed to specific

values, the user can exactly reproduce runs of the BIRD program.

Set State-Info [Min-Population-For-Breeding I Score I Source-Directory I

Spontaneous-Generation I State-Directory]

This command is used to set the parameters for state info system. See the specific help

for the given command for more details.

Set State-Info Min-Population-For-Breeding [<number> I <variable>]

System state info is still under development.

Set State-Info Score [<state-ID> l <variable>] [<number> I <variable>]

System state info is still under development.

Set State-Info Source-Directory <directory-name>

System state info is still under development.

Set State-Info Spontaneous-Generation [<number> i <variable>]

System state info is still under development.

Set State-Info State-Directory <directory-name>

System state info is still under development.

Set Storage-Checking [True I False]

This command is mostly for debugging routines that overwrite memory. At a cost of a few

bytes per a/location, the system is capable of keeping track of all allocated storage, and checking

it for overwriting. Normally, this is set False.

Set System [Check-For-Idleness 1 Command-Structure I Priority I

Required-Idle-Time I Sleep-Period-If.Not-Idle I Time-Commands I Type]

This command is used to set the system parameters. See the specific help for the given

command for more details.

Set System Check-For-Idleness [<number>l <variable>]

This command sets the number of seconds between checks for system idleness.

Set System Command-Structure [Full I Standard]

BIRDReferenceManual -71-

This setsthe command structure for the system. The default is Full; this is the full set of

BIRD commands. The Standard set of command is a proposed standard which has a much-re-

duced command set.

Set System Priority [<number> I <variable>]

This command is used to reduce the priority of the BIRD program. It is useful when one is

doing a large run and wishes to avoid competing with other uses on the system.

The maximum one can reduce priority is 20; also, one cannot regain priority once one has

given it up.

Set System Required-Idle-Time [<number> I <variable>] .

This command sets the number of seconds we require the system be idle (of interactive

jobs) before we allow the BIRD program to run.

Set System Sleep-Period-If-Not-Idle [<number> I <variable>]

This sets the number of seconds the program sleeps if the system is not idle.

Set System Time-Commands [True I False]

If you are interested in speed, this command prints out statistics about the time it took to

execute the last command.

BIRD> Set System Time-Commands True

BIRD> DoTimes i00

DOTI_[ES>Address i010- Silently

DOTIMES> End

[Elapsed: 16 secs; Usage: 0.080000]

Set Version [BIRD I Syntax] <major-version> <minor-version>

This sets the version of the program or syntax used by the following input commands. If

BIRD detects a possible incompatibility, it signals the user with a warning message.

This command is mostly useful in command files; by placing the version information at

the head of command files, one is warned at execution time if the program has been changed in a

potentially incompatible manner.

For the program, the major version number if incremented when a major update of the soft-
ware is made. The minor version is incremented whenever any change is made to the software.

For the syntax, the major version number is incremented whenever the command syntax is

- 72- BIRD Reference Manual

changed making a previously syntactically-valid command invalid. The minor version number is

incremented whenever a new co--and is added to the command syntax.

BIRD> Set Version Program 3 120

?BIRD version mismatch: program 3.163, software 3.150

?Your software may not work properly in this version

Set Weather-Expansion [<number> I <variable>]

The default size for weather addresses is 256 bits. This command allows one to set a mul-

tiplicative factor by which to expand the weather address. For example, you could set the factor to

"2", and all weather addresses will be of size 512.

Currently, this does nothing more interesting than duplicate bits. Eventually, I hope to have

larger numbers give more discrimination among weather field values.

Show [All I Array-Variance I Average-Weights I Best-And-Worst 1

Best-Distribution I Better I Bit-Statistics I Candidates I Comparison l Counter-Vote I
Crossover 1Defaults I Definition I Difference I Distance i Fields I

Genetic I Input-Sums I Location IMapping I Memory I

Output-Sums I Plot I Radius.Estimate I Score I Selected I State-Info I

Status I Storage-Statistics I System I Time l Underwritten-Statistics]

Variable I Version I Weather-Decoding I Weights I Write-Statistics]

This command shows information about things. See the specific help for the given com-
mand for more details.

Show All [Addresses I Definitions I Memories]

This command shows information about all items in the given class. See the specific help

for the given command for more details.

Show All Addresses

This command shows all defined addresses, including system internals, user addresses, and

user arrays.

BIRD> Show All Addresses

Address WOOF, address size 256, bit address

Array SAMPLES, 1000 addresses, address size 256, bit addresses

Address CENT is a system internal

Array Z is a system internal

Array R is a system internal

Array W is a system internal

Array L is a system internal

Array F is a system internal

BIRDReferenceManual -73-

Address
Address
Address
Address
Address
Address
Address

A is a systeminternal
F is a systeminternal
M is a systeminternal
R is asysteminternal
W is a systeminternal
FCENT is asysteminternal
Z is asysteminternal

ShowAll Definitions

This command shows all commands defined with the Define command. For a more de-

tailed description of an individual definition, use the Show Definition command.

BIRD> Show All Definitions

There is1 command defined.

Define ARF Variable Sloops

Show All Memories

This command shows all currently defined memories. Example:

BIRD> Show all memories

Memory Woof, 1024 locations, size 256/256

Memory Aft, 8192 locations, size 256/256, on Connection Machine

Show All Variables

This command prints a list of all currently defined variables and their current value:

BIRD> Show All Variables

$NUMBER-OF-WRITES: 0, $TOTAL-NUMBER-OF-WR/TES: 0,

$DISTANCE: 0,$GENETIC-DONE: 0, $LOCATION-SELECTED: 0,

$UNWEIGHTED-DISTANCE: 0, $LOCATION-DISTANCE: 0,

$GENETIC-FAILED: 0, $GENETIC-OK: 0,$LOCATION-AVG-VOTE: 0,

$BAD: 0, $GOOD2: 0, $GOODI: 0,$LOCATION-RADIUS: 0,

$SELECT-COUNT: 24, $SDM-RADIUS: III,

$PROGRAM-ID: 649180109, $LOCATION-BIRTHDATE: 0,

$LOCATION-WEIGHT: 0

Show Array-Variance <array> {<start> I <variable>} {* I <start> l <variable>}

This command shows statistics about the variance of the given address array. For example,

we can get statistics about the variance of the first 100 weather addresses:

BIRD> Show Array-Variance W 1 100

Average address distance from bit centroid: 36

- 74- BIRDReferenceManual

Variancein addressdistanceaboutaverage:182(stddev13.490738)
Variancein addressdistanceaboutzero:1510(stddev38.858718)
Averagebit distancefrom center:0.140000
Varianceof bit distanceaboutaverage:0.028272
Averagebit variationaboutzero:0.048528

Bit centroid:
11111111_ 111111ii0000000011111111_ 0001111111100000
0011111111110000011111111000000000001111111110000000001111111100
00000011111111101110(0)0(0KO1111100011111111100000000011111111100
011111111(K)0(0)O0111111110(0)0(0)0_ 0(0)0(0)O)00000000

Float centroid:
111111110(K)(0)000111111110(000(001111111100(0)0(0)0!346891186532000
4455555555554444489111116300000000!3568119875430000!347111997630
00000271111199507764222222357777!345789187653!!0 0!!3457198876542
46789991132!0000[7788991932!!000000000!!!t0000000000000(030000000

In the representation of the float centroid, the numbers are rounded to the nearest tenth, so

that [0.0, 0.1, 0.2 0.9, 1.0] are mapped onto the characters [0, t, 2, 9, 1].

The centroids are assigned to the system addresses CENT and FCENT.

Show Average-Weights [<min-#-of-writes> I <variable>]

For all the locations which have at least the given number of writes, this command returns

the average weight of the 50 best, in the first bit column.

BIRD> Show Average-Weight i0

Average weight for first bit of 50 best is: 0:33 1:24

Show Best-And-Worst [<min-#-of-writes> I <variable>]

This command shows the best and worst locations for predictiveness, given the restriction
that all considered locations must have at least the minimum number of writes.

BIRD> Show Best-And-Worst 1

Best max scores: 11:10000 14:10000 38:10000 39:10000 51:10000

Best avg scores: 11:10000 14:10000 38:10000 39:10000 51:10000
Worst max scores: 11:10000 14:10000 38:10000 39:10000 51:10000

Worst avg scores: 549:4944 810:4944 820:4944 924:4944 971:4921

Show Best-Distribution <newfUe> [<min-#-of-writes> l <variable>]

This command creates a file with the distribution of distances for the best 30 predictive lo-

cations. I'm not sure how well this currently works.

BIRDReferenceManual - 75-

ShowBetter [<min-#-of-writes> I <variable>]

This command shows the best 30 locations for predictiveness of the first bit. It shows two

tables: those that are best for predicting "1", and those that are best for predicting "0". It only con-

siders locations which have at least the given minimum number of writes.

BIRD> Show Better i0

Best max scores for [1]:
39:212 62:200 650:177 806:132 290:i04 192:87 939:73 951:73 37:61 865:50 576:50

465:26 903:24 608:18 114:17 204:17 466:10 44:6 180:5 860:3 880:3 659:2 870:2

95:2 557:2 203:0 8:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

Best max scores for [0]:
537:664 381:111 432:98 528:87 464:87 69:73 284:73 676:57 214:50 969:33 109:24

292:24 491:20 1004:17 644:17 67:13 695:13 534:13 40:12 548:10 111:10 36:8

352:6 175:5 652:5 485:4 321:4 103:4 350:4 12:3 413:2 0:0 0:0 0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

Show Bit-Statistics

This command shows the distribution of bits in the memory locations of the current mem-

ory.

BIRD> Show Bit-Statistics

Avg numbers: I:127 0:128 *:0

This shows that each location has roughly 127 "1" bits, 128 "0" bits, and no "*" (dont-care)

bits.

Show Candidates {No-Address I <address>}

This command shows the candidates that the genetic system would have selected.

Show Comparison Memory [Distances I Counter-Weights I Location-Addresses [Selected-

Sets] <memory-l-name> <memory-2-name>

This command compares the internal values for two memories. It is primarily useful for

debugging simulators, by allowing relatively rapid testing that equivalent memories on different

platforms give the same results.

Show Counter-Vote [<location-index> l <variable>] {<bit-position> l <variable> }

My work on the statistics of data counters allows a value called a weight to be associated

with each data counter. The weight is a measure of how predictive the data counter is. Depending

on this weight, a given counter may "vote" for a "1" bit value (if it is predicting above the mean)

or a "0" bit value (if it is predicting below the mean).

- 76- BIRDReferenceManual

SeeShowWeights for moredetailedinformationabouta locationcounter'sweight.

BIRD> Show Counter-Vote I0 1

>----mean

Show Crossover [<min-distance> l <variable>] <address-I> <address-2>

This command crosses over the two addresses if the distance between then is greater than

the given minimum distance. The purpose of this command was simply to test the internal routines

for doing crossovers.

BIRD> Show Crossover I0 I010- llll-

OKt(98 & 30 >= 10)

Address1:

1010101010101010 1010101010101010 1010101010101010 1010101010101010

1010101010101010 1010101010101010 1010101010101010 1010101010101010

1010101010101010 1010101010101010 1010101010101010 1010101010101010

1010101010101010 1010101010101010 1010101010101010 1010101010101010

Address2:

111111111111111II1111111111111111111111111111111 1111111111111111

1111111111111111 1111111111111111 1111111111111111 1111111111111111

1111111111111111 1111111111111111 1111111111111111 1111111111111111

11111111111111111111111111111111 1111111111111111 1111111111111111

Crossover:

1111111111111111 1111111111111111 1111111111111111 1111111111111111

1111111111111110 1010101010101010 1010101010101010 1111111111111111

1111111111111111 1111111111111111 1111111111111111 1111111111111111

1111111111111111 1111111111111010 1010101010101111 1010101010111111

Show Defaults

This command shows all the current defaults. Example:

BIRD> Show Defaults

Set Default Address-Size 256

Set Default Address-Type Bit-Addresses
Set Default Area 15

[... etc ...]

The Show Defaults command prints out the defaults in a format that looks like

system commands; this allows the user to capture the commands for future use.

Show Definition {<command-name>}

BIRD Reference Manual - 77 -

This command shows the definition for the given command, if the command was previous-

ly defined using the Define commands. For example:

BIRD>Define Arf Variable

DEFINE> DoTimes SLoops

DOTIMES2> echo HI

DOT[M]_S 2> End

DEFINE> End

BIRD> Show Definition arf

Define ARF Variable Sloops

DoTimes Sloops

Echo HI

End

End

SLoops

Show Difference <address-I> <address-2>

This shows the difference between two addresses. If no dont-care bits are involved, the dif-

ference is equal to the distance. If dont-care bits are involved, the difference counts as different a

dont-care bit matched against anything but another dont-care bit. Example:

BIRD>Show Difference iiii0000- llll000*-

Distance is 32

Show Distance <address-I> <address-2>

This shows the distance between two addresses. Example:

BIRD>Show Distance 11110000- llll0001-

Distance is 32

This example illustrates something we haven't previously seen: how does the system as-

sign the length to recursive addresses (that is, addresses that end in "-")? In most cases, it is done

by context: for example, if we use an address in the Address command, then the expected length

is the address size of the memory. If there is no expected length given by the context, then the value

of the default address size (as set by Set Default Address-Size) is used for the size.

Show Fields

This commands prints out a lot of information concerning the encoding of the weather

fields.

Show Genetic Candidates

This command shows information about the last pair of candidates for genetic crossover.

- 78 - BIRD Reference Manual

Show Genetic Parameters

This command shows the values of the parameters that are settable using the Set Genetic
command.

Show Genetic Status

This command shows statistics about the classifications of the potential genetic candidates.

Show Input-Sums

Most of the simulators keep values called an input sum. Whenever a write operation is con-

ducted, the input sum counters are also incremented and decremented. The input sums are equiv-

alent to a memory location which is always selected during writing, though it does not contribute

during reading.

This command also shows the total number of data addresses written into the memory.

Show Location [<number> I <variable>]

This command gives extensive information about the given location. The command re-

quires an argument, which is the index of the location in the current active memory. _Example:

BIRD> Show Location 333

[Lots of stuff about the location, including the location address and counters.]

Show Mapping <address-array> {Aill <element-index> I <variable>}

This command shows information concerning the reorderings that are taking place in the

given address array, either for every element, or for only the given element.

BIRD> Show Mapping L i0

ORIGINAL o_er

BIRD> Reorder L Randomly

BIRD> Show Mapping L I0

RANDOM o_er

10--> 580

1 *

The first command simply tells us that the array is in original order. After reordering, the

array is in RANDOM order, and the reference to "L10" would actually refer to physical memory

location 580.

Show Memories

This command shows a single line of information about all created memories. For exam-

BIRDReferenceManual - 79-

ple:

BIRD> Show Memories

Memory Test, 1000 locations, size 256/256

Memory CM, 8192 locations, size 256/256, on Connection Machine

Memory CM-weather, 100130 locations, size 256/1, on Connection Machine

Show Memory

This command gives a sequence of commands which should be able to recreate the given

memory, though it does not keep track of the read and write operations which have taken place.

BIRD> Show Memory

[Lots of Set Default, Create Memory, and Set Memory commands.]

Show Output-Sums

When a read operation is requested, the memory collects the data counters columnwise into

sums, then thresholds these sums to create the read address. You can see these sums before thresh-

olding with this command. For example:

16 -I6

16 -16

16 -16

BIRD> Show 0utput-Sums

[NOW: 16] 16-16 16 -16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16
16 -16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16

16 -16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16 16-16

16-16 16-16 16-16 16-16 16-16 [...]

In this example, NOW gives the number of individual location writes contributed to this

sum. The output sums are then printed out. In this case, the memory likely had the address 1010-

written to it near where we were reading.

Show Plot Parameters

This command prints the current parameters for plotting.

BIRD> Show Plot Parameters

Set Plot Call-Plotview True

Set Plot

Set Plot

Set Plot

Set Plot

Set Plot

Set Plot

Pixrect False

Top-Title
Bottom-Title

Left-Title

X-Dimensions Machine-Settable

Y-Dimensions Machine-Settable

Show Plot Plot-File <oldfile>

- 80 - BIRD Reference Manual

This command attempts to display the given plot file.

Show Plot Data-File <oldfile>

This command attempts to display the givenplot data file.

Show Radius-Estimate [<address-size> I <variable>] [<desired-area> i <variable>]

Assuming random addresses, this command calculates what a good radius would be, given
the address size and the desired number of locations to select.

BIRD> Show Radius-Estimate 256 i0

For address size 256 and area 10, radius is 109

Show Score [<starting'index> I <variable>]

{Weather-File-Size I <ending-index>l<variable>}

This command scores the current memory as to its ability to predict rain. It runs through

the given range of weather addresses and reads the memory, then compares the single-bit output of

the memory with the rain information for the next four hours. It gives a total of correct and incor-

rect responses, broken down into "+" (rain) and "-" (no rain) categories.

BIRD> Show Score

correct: +:14-:7

incorrect: +:53 -:26

1 i00

In this example, we got 14 correct predictions of rain, 7 correct predictions of dryness, 53

incorrect predictions of rain, and 26 incorrect predictions of dryness.

Show Selected

This command shows a list of the selected memory locations from the last Address opera-

tion. it also gives the distance from that memory location address to the sample address. For ex-

ample,

BIRD>Address 1010-

Selected 16 locations, radius used was 111

BIRD> Show Selected

Format is: index <distance>

59 <106>, 90 <110>, 175 <111>, 194 <110>, 298 <11 I>, 339 <109>, 390 <106>,

516 <110>, 583 <108>, 600 <111>, 611 <110>, 617 <108>, 662 <111>, 716 <106>,

776 <110>, 791 <109>

We could confirm that a given distance is correct by typing:

BIRD>Show distance L59 I010- ; dist btw loc 59 and address

BIRD Reference Manual - 81 -

Distance is 106

Show State-Info

Not currently implemented.

Show Status

This command prints the status of a variety of different Set commands. For example:

BIRD> Show Status

Set Active-Memory Woof

Set Command-Timing False

Set Dont-Caxe-Bits-In-Memories False

Set Ignore-One-Exact-Match False
Set K-Value 1

Set Print-Text-With-Addresses False

Set Random Seed 631394912

Set Random Address-Seed 333

Set Random Dont-Care-Bits-On 0

Set Random Address-Bits-On Random

Set Weather-Expansion 1

Show Storage-Statistics

This command shows information concerning the dynamic memory usage of the BIRD

program. Most of the information will not be useful to the average user unless they are acquainted

with the internals of the program.

Show System

This command shows the current values of the system parameters set using the Set System

command.

BIRD> Show System

Set System Priority 0

Set System Required-Idle-Time 900

Set System Check-For-Idleness 60

Set System Sleep-Period-If-Not-Idle 0

Set System Command-Structure Full

Show Time

This shows information about the current time.

BIRD> Show Time

- 82 - BIRD Reference Manual

Wed Jan 3 12:00:07 1990

Show Underwritten-Statistics [<location-index> I <variable>]

This command shows statistics about the utilization of the given memory location.

BIRD> Show Underwritten-Statistics i0

For location 10:

Age: 3 Number of writes: 0

Probability of hit/write: 0.014648 Found probability: 0.000000
Mean: 0.043945 Std dev: 0.209631 Number of std devs from mean: 0.209631

Show Variable [<function> I <variable> I <number>]

For example:

BIRD> Show Variable $Radius

Value is 112

If a variable that has not been created is given to this command, the value "0" is printed,

This is a widespread practice; using a variable that has not been defined is not an error, but uses

the value zero. This is true for all commands _ assignment; it is an error to try to assign the

value of a variable that does not exist. For example:

BIRD> Assign Variable $never-created 12345

?Not avariable:$never-created

Show Version

This shows version information about the BIRD program.

BIRD> Show Version

BIRD version 3.0, brain.riacs.edu, created 29 Dec 89

Syntax version 3.0, simulators: software, Connection Machine (CM not attached)

The fin'st line of the version info contains the major and minor version number of the pro-

gram, the host name the program is running on, and the date the program was compiled. The minor

version number is automatically augmented whenever a local change to BIRD is made.

The second line of the version info contains the syntax version and the simulators compiled

into this instance of the BIRD program. The major software version is incremented whenever a

syntactically-incompatible change is made to the program syntax. The minor version is increment-

ed whenever an addition to the syntax is made.

Show Weather-Decoding <address>

BIRD Reference Manual - 83 -

This command shows the distance between each of the 16-bit fields of the given address

and the 16-bit codes used to encode weather addresses. For example:

BIRD> Show

Stationnumber: 15 (0)

Year: 61/62 (15)

Month: 1 (16)

Day: 1/2 (16)

Time: 0 (16)

Pressure: 10026/10034 (I3)

Dry Bulb: 269/273 (8)

Wet Bulb: 250/252 (11)

Dew Point: 25 (14)

Wind Direction: 12 (16)

Wind Speed: 3 (12)

Cloud Cover: 7 (13)

Present Code: 1/2 (14)

Past Code: 2 (13)

Rain: 0 (9)
........................

Weather-Decoding wl

[0]
[0/I/2/3/4/5/6/7/8/9/I0/1I/I2/I3/14/I5]

[0/2/4/8/I0/I2/i6/I4/12/8/6/4]

[0/2/4/6/8/1 (3/12/14/16/14/12/10/816/4/2]

[0/2/4/8/I0/12/i6/14/12/8/6/4]

[2/1/0/1/2/3/4/5/6/7/8/9/10/11/12/13]

[7/6/5/4/3/2/1/(3/1/2/3/4/5/6/7/8]

[11/10/9/8/7/6/5/4/3/2/1/0/1/2/3/4]

[14/13/12/11/10/9/8/7/6/5/4/3/2/1/0/1]

[10/12/14/16/14/12/10/8/6/4/2/0/2/4/6/8]

[3/2/1/0/1/2/3/4/5/6/7/8/9/10/11/12]

[13/11/9/7/6/4/2/0/2]

[1/0/1/2/3/4/5/6/'7/8/9/10/11/12/13/14]

[2/1/0/1/2/3/4/5/6/7/8/9/10/11/12/13]

[0/9/8/9/8/918/9/8/9/8/9/8/9/8/9]

Each line begins with the name of the weather field. What follows is the field identifier for

the field which matches the closest to the corresponding 16-bit field in the address. In parenthesis

is given the range of that field, which is the difference between the closest encoding and the furthest

encoding from the 16-bit field in the address. Finally, we give a list of each of the 16-bit field en-

coding distances from the 16-bit field in the address.

Show Weights [<location-index> I <variable>] {Statistics-Only I Individual-Bits }

My work on the statistics of data counters allows a value called a weight to be associated

with each data counter. The weight is a measure of how predictive the data counter is. This com-

mand shows the weights associated with the data counters of a given location, either averaged (Sta-

tistics-Only) or for each of the individual bit counters (Individual-Bits).

A weight of 10000 is the maximum possible weight.

BIRD> Show Weight 10

The predominant bit is 1

Weights: avg: 324 best: 10000 worst: 33

Show Write-Statistics

This command prints a histogram of the memory usage of the memory locations.

BIRD> Show Write-Statistics

Average number ofwritesis0

- 84 - BIRD Reference Manual

1 ---> 38; 2---> 12; 3 ---> 1;

In this example, 38 locations had one write, 12 had two writes, and i had three writes. The

remaining locations had zero writes.

11
7

Sleep [<function> l <variable> l <number>]

This puts the BIRD program to sleep for the given number of seconds

BIRD> Sleep i0

[The program goes away for 10 seconds, then returns]

Test

This is a hook for testing out commands written in C, Not much use unless you're planning

to hack the internals of the BIRD program, in which case this is a simple place to insert commands

for testing.

While [<function> I <variable> l <number>]

This command executes its block as long as the test is true (non-zero). For example, we

may wish to write an address to the memory was long as reading the address does not result in the
written address:

BIRD> Read

BIRD> While Not Same

WHILE> Write 1010-

WHILE> Read

WHILE> End

R i010-

Write <address>

The Write command writes the given address to the currently active memory. You must

have some time previously used the Address command for this command to have any effect on the

state of the memory.

BIRD Reference Manual - 85 -

- 86 - BIRD Reference Manual

PRECEDi'."CG PAGE BLANK NOT FILME_

APPENDIX B: A sample script of BIRD commands

B.I: A sample script that creates a memory, writes, reads, and saves

; Sample script i. This script creates a memory, writes to it,

; and reads from it, then saves it to a file.

; To execute this file, type "Input file scriptl.incl"

Set Default Address-Size 256 ; 256 bits of address

Set Default Data-Size 256 ; 256 bits of data

Set Default Number-0f-Locations I000 ; 1000 locations

Create Memory Test

Address 1010-

Write llll0000-

Read

Show Memory

Show Output-Sums

Output Memory Test.memory

; Memory named "Test"

; Address with i010...

; Write

; See if it's there

; Show memory info

; Show output sums

; Output to a file

B.2: A slightly more complex script

;; Sample script 2.

; The semicolon makes this a comment line.

; (Note the use of lowercase.)

; To execute this file, type "Input file script2.incl"

show version

set default address-size 256

set default data-size 256

create memory Test

; The memory has been created. Write 5 random addresses to it.

address z

write z

address z

write z

address z

write z

address z

write z

address z

; "z" is a random address

BIRD Reference Manual - 87 -

write z

; Write a specific random address at a specific place

address zl

write z2

; See if we can read it. Tell us how good the match was.

read z2

; Show some stats about the memory and save it.

show memory

show selected

output memory file.memory

; delete memory ; doesn't work yet

; End of script

B.3: Testing memory capacity

;; Sample script 3.

; To execute this file, type "Input file script3.incl"

create variable Smemory-size I000

set default number-of-locations $memory-size

set default address-size 256

set default data-size 256

create memory Test

do $i 1 Smemory-size

address z$1 silently

write z$1

assign variable $2 0

do $3 1 $I

address z$3 silently

read z$3 silently

if GT $distance 0

assign var $2 plus $2 1

end

end

; write a new sample

; $2 is number of mistakes

; loop over all stored items

; READ sets var Sdistance

; if not read perfectly, count

; print out a message every once in a while

- 88 - BIRD Reference Manual

if GT $2 0

echo "After storing" $i "items, found" $2 "error(s)"

else

if not mod $I I0

echo "Stored" $I "items"

end

end

end

BIRD Reference Manual - 89 -

APPENDIX C: Installing the BIRD program at your site

The BIRD program needs some customization for the specifics of your site before it can be in-

stalled successfully. This appendix explains the process needed to install the BIRD program.

A.1. Extracting BIRD from tape or tar file

You have received the BIRD program on either a magnetic tape or

as a file named SDM.tar. In either case, you will need to run the

UNIX "tar" program to extract the BIRD source fries. If you have a magnetic

tape, then connect to an empty directory and type the command:

unix% tar xv

to a UNIX shell after the tape is mounted. If you have a file, then

create a new directory, place the file SDM.tar in that directory, and

type the command:

unix% tar xvf SDM.tar

These commands unpack the contents of the BIRD program. The directory is

left with a number of files, including the *.c sources to BIRD and

a Make file to construct it with. Before typing "make", there are a

few customizations you will need to perform.

A.2. Customizing your local version of the BIRD program

AlI the local changes you make should be in two files, "Makefile" and

"sdm.h". If you feel you must change other files, please contact the

author with information: every attempt has been made to allow the

user to setup BIRD without having to delve into the depths of the program

source code.

A.2.1. The Makefile

First, you much choose which combination of the three possible simulators you

wish to include. You can include the local host software simulator,

the Stanford hardware simulator, and the Connection Machine simulator.

Inclusion is not exclusive; you can include any combination of the

above simulators, and even create multiple memories, with each memory

using different simulator hardware.

- 90 - BIRD Reference Manual

All the option lines in the Make file are at the beginning of the file,

and start with a line containing "#* * *". To include an option, you uncomment

the block of "make" commands following the option starting line. To remove

an option, you comment out the lines by inserting a "#" at the beginning of
the undesired commands.

For example, to include the Connection Machine code, uncomment the second
and third lines:

#*** This includes

#LCM2= -iparis

#CMFLAG= -DCM

software for the Connection Machine

by removing the initial "#" characters, leaving:

#*** This includes

LCM2= -iparis

CMFLAG= -DCM

software for the Connection Machine

At this time, edit your Makefile to include the software simulator,

the Stanford hardware prototype, or the Connection Machine. When you are

finished, continue onto the next section. The default Makefile is to

include the software simulator, and to not include either the Stanford

hardware or Connection Machine software.

The Makefile contains a number of other options you will need to set.

The first of these options is whether to include fake calls for the CM/Paris instructions. This is only

useful for development, so you will likely leave this line commented out:

#*** Include this if we wish to load the CM library

#*** very useful outsode of development work)

#FAKECM= -DCMX

fake calls (not

The next is where to find the file paris.h, the include file for CM/Paris instructions. This is not

needed if you are not including the CM source code in your compilation.

#*** Which paris.h file to load, "paris.h" (local) or <cm/paris.h>

#*** (global)

#PARI S= -DGLOBALPARIS

PARIS= -DLOCALPARI S

The following flag is uncommented if the UNIX version contains the *memalign0 function.

#*** This is whether the software contains the *memalign() function

BIRD Reference Manual - 91 -

#MEMALIGN= -DMEMALIGN

The next line determines whether additional software is loaded into the memory allocation routines

to do dynamic memory checking for overflow errors. It hasn't been much of a problem for me, so

you may wish to turn it off for speed.

#*** This determines whether additional (time-consuming)

#*** is added to do dynamic memory checking

MEMALIGN = -DMEMALIGN

software

A.2.2. sdm.h

The file "sdm.h" is the major include file for the BIRD program. All

system variables such as file names are contained in this file.

The file "sdm.h" consists of two sections. The f'trst section is called

the variable section, and is where we keep the machine-dependent values

which may have to be changed for each installation. The second section

contains the constant, which should not be changed. These two sections

are clearly marked in the file.

#define BUILDER "drogers"

You should place the login name of the program builder here. The

builder in some versions has special permissions in the program, and

is not logged in the log file.

/*#undef LOGFILE */

#define LOGFILE "/u5/drogers/sdm/sim/LOG"

This is a file where a log of users of the BIRD program are kept.

The file should be universally writable. If you do not wish this option,

use the "undef" line.

#define FULL HELP DIR "/u5/drogers/sdm/sim/Full-Help/"

#define STANDARD HELP DIR "/u5/drogers/sdm/sim/Std-Help/"

These are the directories where the help command files are kept.

There are two directories; one for the help with the full command set,

and another for a special "standard" command set of a proposed SDM

interface standard. (The program defaults to the FULL command set.)

#define BUGCOMMAND "/usr/ucb/mail -s \"Bug report for BIRD\" drog-

ers@riacs.edu"

This is the command which is executed to send a bug report. Feel free

- 92 - BIRD Reference Manual

to add your name to the list of recipients.

#define SITE "BIRD site RIACS.EDU, SUN implementation"

Information about the local site.

#define

#define

#define

#define

FIELDFILE "/u5/drogers/weather/fields"

WEATHERFILE "/u5/drogers/weather/weather.data"

SIZEFILE "/u5/drogers/weather/filecount"

PTRFILE "/uS/drogers/weather/dataptrs"

These are files used to access the weather data from Darwin,

Australia. The FIELDFILE is used to map the weather information into

categories. The WEATHERFILE is where the weather data is kept. The
SIZEFILE is the number of entries in the weather file. The FrR.FILE is -_

a list of the starting position in the weather file for each of the fields.

/* #undef GRAPH */

" " h"/* #define GRAPH /usr/bin/grap */

#define GRAPH "/u5/drogers/sdm/naxis/naxis"

This is the name of a program which does the preprocessing

of our data files to make them plot files. The program I use

is called "axis", and is mostly replaceable by the UNIX "graph"

program. If you do not have either program on your machine,
leave this undef'med.

/* #undef PLOTVIEW */

#define PLOTVIEW "/u5/drogers/sdm/pv/pv"

This is the name of the program that takes a UNIX plot file and

displays it on the screen. Currently, we only have this for

SunView. Eventually, an X version would be spiffy. If you do not have

such a program on your machine, leave this undefined.

/* #undef PLOT2PR */

#define PLOT2PR "/u5/drogers/sdm/plot2pr/plot2pr"

This is the name of the program that translates plot files to pixrect

files. If you do not have such a program on your machine, leave this
undefined.

/* #under GENETICSTATEDIR */

/* #under GENETICSOURCEDIR */

#define GENETICSTATEDIR "/uS/drogers/sdm/State"

#define GENETICSOURCEDIR "/uS/drogers/sdm/Source"

BIRD Reference Manual - 93 -

These are the files for using the genetic state stuff. Not for the

faint of heart. Best to just ignore this for now.

/* #undef IDLELOG */

#define IDLELOG "/u5/dro.gers/sdm/sim/IDLELOG"

These fries are used when we are using the run-only-when-idle stuff.

This is the LOG file for idleness. Leave undefined if you don't care:

you most likely won't.

/* #undef STATUSFILE */

#define STATUSFILE "/u5/drogers/sdm/Status"

#define STATUSCHECKPERIOD 60

This is the directory where the host-specific status files are kept.

The directory contains host-specific files which are "touched"

occasionally to signal that the program is still running on that host.

Leave undefined if you don't need this, which you probably don't.

A.3. Making the BIRD program

Once the customization have been made, you can make the BIRD program

by typing "make" in the source directory. The final program is

an executable called (appropriately enough) "bird"; this program

can be moved to whatever directory you wish.

A.4. Using the Connection Machine simulator

The connection machine software is included in the BIRD program, but you must take two

steps before using it. First, you must make sure that the BIRD program was compiled with the
Connection Machine software installed. To do this, check the Makef'lle for bird to make sure that

the lines for including the Connection Machine software are not commented out. These lines look

somewhat like this:

#*** This includes

LCM2= -lparis

CMFLAG= -DCM

software for the Connection Machine

You should ensure that the lines starting with LCM2 and CMFLAG are not commented out,

that is, do not begin with the character "#". If they do, remove the "#" character, delete the current

version of BIRD (if any), and remove all the ".o" files from the BIRD directory. Typing "make"

will now create a version of BIRD that includes the Connection Machine software.

- 94 - BIRD Reference Manual

To run the BIRD program using the Connection Machine, you must run BIRD from a

CMATTACH subshell. To do this, type:

unix% cmattach

to the UNIX prompt. (If this does not work, consult your local Connection Machine guru.)

This will attach and cold-boot the Connection Machine. It will then run a new shell, leaving you

at UNIX top-level. You now run bird by typing:

unix% b i r d

BIRD version 0.9, brain.riacs.edu, create 28 Dec 89

Syntax version 1.1, simulators: software, Connection Machine
BIRD>

Finally, you need to set the default hardware type so that memories you create are on the

Connection Machine. Type:

BIRD> Set Default Hardware Connection-Machine

From this point onward, all memories created will use the Connection Machine. When you

are finished, quit out of BIRD and then quit out of the CMATrACH shell by typing "quit" to the

UNIX prompt. This frees the Connection Machine to others who may wish to use it.

Because of the structure of the Connection Machine, you will get maximum performance

if you choose the number of locations in a memory to be a power of two. If you do not, the extra

locations are created but ignored.

APPENDIX D: Machine-independent address format

Proposed standard format for a machine-readable SDM address.

David Rogers 14 June 1989 (drogers@riacs.edu)

Updated by David Rogers, 15 September 1989

The SDM address consists of a two-line header followed by an optional block of text information,

then by a block of address information, and optionally followed by a block of dont-care informa-

tion. A file of SDM addresses is simply a sequence of records, each of which contains a legal SDM
address.

Whitespace is defined as a space, a tab, a linefeed, or a carriage return. Whitespace is ignored in

the address and dont-care blocks, to allow formatting to make them easier to read.

The header:

Line 1: "SDM Address 1"

BIRDReferenceManual -95-

Line 2: five numbers:

the address type, either 0 (bit) or 1 (float)

the length of the address, in bits
the number of lines in the name block

the number of lines in the address block

the number of lines in the dont-care block, 0 if none.

The header is followed by an optional name block, then an address block, and optionally a dont-

care block.

The address block is a string of characters "0" and "1" (for bit addresses) or a string of floating-

point numbers (for float addresses). For floating-point addresses, each number must be separated

by at least one whitespace character. For bit addresses, no whitespace separation is required. The

numbers in floating-point addresses must be between 0.0 and 1.0 inclusive.

If a dont-care block is given, it is in the same format as the address block, with the "0" being dont-

care, and "1" being fully-care. Examples:

SDM Address 1

016010

1111111111111111

SDM Address 1

032210

random address

with two lines in the name block

00000000 11111111 01010101 11110000

SDM Address 1

016111

address with dont-care bits

00100100101010110010101010101010

11110000111100001111000011110000

SDM Address 1

1 16120

floating address, with the address formatted over two lines
0.30.50.30.91.01.00.00.0

1.00.90.560.550.33331.01.0.999999

HEX format binary addresses

Outputting binary addresses as bits is very time- and space-consumptive. Thus, I decided to add

a definition for HEX format binary addresses. These compact four bits sequences of the address

into a single hex digit, i.e., 0101 --> "9".

- 96 - BIRD Reference Manual

The header:

Line 1:

Line 2:

"SDM Address 1"

five numbers:

the address type, 2 (binary address in HEX)

the length of the address, in bits

the number of lines in the name block

the number of lines in the address block

the number of lines in the dont-care block, 0 if none.

The address block is a string of hex (4-bit) characters "0" through "9" and "A" (or "a") through "F"

(or "f"). Extra whitespace characters are ignored. Examples:

SDM Address 1

216010

FFFF

SDM Address 1

232210

random address

with two lines in the name block

00FF 99F0

SDM Address 1

2 256 0 i 0

D16A118DD69A08FIE0871A507E 17AADFEFE7853BDD863E41477F69E711562E52

 EC, 9. /Go/

